Skip to content

thedemodev/kube-resource-report

 
 

Repository files navigation

Kubernetes Resource Report

Travis CI Build Status

Code Coverage

Docker pulls

Calendar Versioning

This version only supports node costs for AWS EC2 (all regions, On Demand, Linux) and GKE/GCP machine types (all regions, On Demand, without sustained discount)

Script to generate a HTML report of CPU/memory requests vs. usage (collected via Metrics API/Heapster) for one or more Kubernetes clusters.

Want to see how the report looks? Check out the sample HTML report and the demo deployment!

What the script does:

  • Discover all clusters (either via ~/.kube/config, via in-cluster serviceAccount, or via custom Cluster Registry REST endpoint)
  • Collect all cluster nodes and their estimated costs (AWS and GCP only)
  • Collect all pods and use the application or app label as application ID
  • Get additional information for each app from the application registry (team_id and active field) OR use the team label on the pod
  • Group and aggregate resource usage and slack costs per cluster, team and application
  • Allow custom links to existing systems (e.g. link to a monitoring dashboard for each cluster)

The primary goal of Kubernetes Resource Report is to help optimize Kubernetes resource requests and avoid slack. Slack is the difference between resource requests and resource usage, e.g. requesting 2 GiB of memory and only using 200 MiB would mean 1.8 GiB of memory slack — i.e. 1.8 GiB of memory capacity are blocked (and paid for), but unused.

Kubernetes Resource Report shows a Dollar value of potential savings, e.g. “You can potentially save 321.99 USD every month by optimizing resource requests and reducing slack”. The potential savings are calculated by taking the cluster costs (sum of all node costs plus any additional configured costs) and attributing the relevant share per application/team by resource requests. Example: a cluster with 15 vCPUs capacity and 768 USD total costs runs an application with 1 vCPU slack, this would show as 51 USD potential savings for the application (“slack”, disregarding memory in this example).

Usage

The usage requires Poetry (see below for alternative with Docker):

$ poetry install && poetry shell
$ mkdir output
$ python3 -m kube_resource_report output/ # uses clusters defined in ~/.kube/config
$ OAUTH2_ACCESS_TOKENS=read-only=mytok python3 -m kube_resource_report --cluster-registry=https://cluster-registry.example.org output/ # discover clusters via registry
$ OAUTH2_ACCESS_TOKENS=read-only=mytok python3 -m kube_resource_report --cluster-registry=https://cluster-registry.example.org output/ --application-registry=https://app-registry.example.org # get team information

The output will be HTML files plus multiple tab-separated files:

output/index.html

Main HTML overview page, links to all other HTML pages.

output/clusters.tsv

List of cluster summaries with number of nodes and overall costs.

output/slack.tsv

List of potential savings (CPU/memory slack).

output/ingresses.tsv

List of ingress host rules (informational).

output/pods.tsv

List of all pods and their CPU/memory requests and usages.

Deploying to Minikube

This will deploy a single pod with kube-resource-report and nginx (to serve the static HTML):

$ minikube start
$ kubectl apply -f deploy/
$ kubectl port-forward service/kube-resource-report 8080:80

Now open http://localhost:8080/ in your browser.

Deploy using Helm Chart

IMPORTANT: Helm is not used by the maintainer of kube-resource-report - the Helm Chart was contributed by Eriks Zelenka and is not officially tested or supported!

Assuming that you have already helm properly configured (refer to helm docs), below command will install chart in the currently active Kubernetes cluster context.

This will deploy a single pod with kube-resource-report and nginx (to serve the static HTML):

$ git clone https://github.com/hjacobs/kube-resource-report
$ cd kube-resource-report
$ helm install --name kube-resource-report ./chart/kube-resource-report
$ helm status kube-resource-report

If you want to do upgrade, try something like:

$ cd kube-resource-report
$ git fetch --all
$ git checkout master & git pull
$ helm upgrade kube-resource-report ./chart/kube-resource-report
$ helm status kube-resource-report

Use helm status command to verify deployment and obtain instructions to access kube-resource-report.

Running as Docker container

$ kubectl proxy & # start proxy to your cluster (e.g. Minikube)
$ # run kube-resource-report and generate static HTML to ./output
$ docker run --rm -it --user=$(id -u) --net=host -v $(pwd)/output:/output hjacobs/kube-resource-report:19.12.2 /output

For macOS:

$ kubectl proxy --accept-hosts '.*' & # start proxy to your cluster (e.g. Minikube)
$ # run kube-resource-report and generate static HTML to ./output
$ docker run --rm -it -e CLUSTERS=http://docker.for.mac.localhost:8001 --user=$(id -u) -v $(pwd)/output:/output hjacobs/kube-resource-report:19.12.2 /output

Application Registry

The optional application registry can provide information per application ID, it needs to have a REST API like:

$ curl -H 'Authorization: Bearer <mytok>' https://app-registry.example.org/apps/<application-id>
{
"team_id": "<team-id>",
"active": true
}

See the application-registry.py script in the sample-report folder for an example implementation.

The generated report can be enhanced with custom links to existing systems, e.g. to link to monitoring dashboards or similar. This currently works for clusters, teams, and applications. Custom links can be specified by providing the --links-file option which must point to a YAML file with the links per entity. Example file:

cluster:
- href: "https://mymonitoringsystem.example.org/dashboard?cluster={name}"
  title: "Grafana dashboard for cluster {name}"
  icon: chart-area
application:
- href: "https://mymonitoringsystem.example.org/dashboard?application={id}"
  title: "Grafana dashboard for application {id}"
  icon: chart-area
- href: "https://apps.mycorp.example.org/apps/{id}"
  title: "Go to detail page of application {id}"
  icon: search
team:
- href: "https://people.mycorp.example.org/search?q=team:{id}"
  title: "Search team {id} on people.mycorp"
  icon: search
ingress:
- href: "https://kube-web-view.mycorp.example.org/clusters/{cluster}/namespaces/{namespace}/ingresses/{name}"
  title: "View ingress {name} in Kubernetes Web View"
  icon: external-link-alt
node:
- href: "https://kube-web-view.mycorp.example.org/clusters/{cluster}/nodes/{name}"
  title: "View node {name} in Kubernetes Web View"
  icon: external-link-alt
namespace:
- href: "https://kube-web-view.mycorp.example.org/clusters/{cluster}/namespaces/{name}"
  title: "View namespace {name} in Kubernetes Web View"
  icon: external-link-alt
pod:
- href: "https://kube-web-view.mycorp.example.org/clusters/{cluster}/namespaces/{namespace}/pods/{name}"
  title: "View pod {name} in Kubernetes Web View"
  icon: external-link-alt

For available icon names, see the Font Awesome gallery with free icons.

Settings

You can run docker run --rm hjacobs/kube-resource-report:19.12.2 --help to find out information.

Besides this, you can also pass environment variables:

  • NODE_LABEL_SPOT (default: "aws.amazon.com/spot")
  • NODE_LABEL_ROLE (default: "kubernetes.io/role")
  • NODE_LABEL_REGION (default: "failure-domain.beta.kubernetes.io/region")
  • NODE_LABEL_INSTANCE_TYPE (default: "beta.kubernetes.io/instance-type")
  • OBJECT_LABEL_APPLICATION (default: "application,app,app.kubernetes.io/name")
  • OBJECT_LABEL_COMPONENT (default: "component,app.kubernetes.io/component")
  • OBJECT_LABEL_TEAM (default: "team,owner")

About

Report Kubernetes cluster and pod resource requests vs usage and generate static HTML

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • HTML 64.0%
  • Python 32.2%
  • CSS 1.9%
  • Makefile 0.6%
  • Smarty 0.4%
  • JavaScript 0.3%
  • Other 0.6%