Skip to content
This repository

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP

This is the Ruby interface to LIBLINEAR (much more efficient than LIBSVM for text classification and other large linear classifications)

branch: master
README.rdoc

liblinear-ruby-swig

DESCRIPTION:

This is the Ruby LIBLINEAR SWIG (Simplified Wrapper and Interface Generator) interface. LIBLINEAR is a high performance machine learning library for large scale text mining(www.csie.ntu.edu.tw/~cjlin/liblinear).

A slightly modified version of LIBLINEAR 1.8 is included which allows turning on/off the default debuging/logging messages. You don't need your own copy of SWIG to use this library - all needed files are generated using SWIG already.

LIBLINEAR is in use at tweetsentiments.com - A Twitter / Tweet sentiment analysis application

INSTALL:

Currently the gem is available on linux and OS X, and you will need g++ installed to compile the native code.

sudo gem sources -a http://gems.github.com   (you only have to do this once)
sudo gem install tomz-liblinear-ruby-swig

SYNOPSIS:

Try the following multiclass problem in irb:

irb(main):001:0> require 'rubygems'
irb(main):002:0> require 'linear'
irb(main):003:0> pa = LParameter.new
irb(main):004:0> pa.solver_type = MCSVM_CS 
irb(main):005:0> pa.eps = 0.1
irb(main):006:0> bias = 1
irb(main):007:0> labels = [1, 2, 1, 2, 3]
irb(main):008:0> samples = [
irb(main):009:1*            {1=>0,2=>0.1,3=>0.2,4=>0,5=>0},
irb(main):010:1*            {1=>0,2=>0.1,3=>0.3,4=>-1.2,5=>0},
irb(main):011:1*            {1=>0.4,2=>0,3=>0,4=>0,5=>0},
irb(main):012:1*            {1=>0,2=>0.1,3=>0,4=>1.4,5=>0.5},
irb(main):013:1*            {1=>-0.1,2=>-0.2,3=>0.1,4=>1.1,5=>0.1}
irb(main):014:1>           ]
irb(main):016:0> sp = LProblem.new(labels,samples,bias)
irb(main):017:0> m = LModel.new(sp, pa)
irb(main):018:0>  pred = m.predict({1=>1,2=>0.1,3=>0.2,4=>0,5=>0})
=> 1
irb(main):019:0>  pred = m.predict({1=>0,2=>0.1,3=>0.2,4=>0,5=>0})
=> 2
irb(main):020:0>  pred = m.predict({1=>0,2=>0.1,3=>0.2,4=>0,5=>0})
=> 2
irb(main):025:0>  pred = m.predict({1=>0.4,2=>0,3=>0,4=>0,5=>0})
=> 1
irb(main):021:0>  pred = m.predict({1=>-0.1,2=>-0.2,3=>0.1,4=>1.1,5=>0.1})
=> 3
irb(main):022:0> m.save("test.model")

For more examples see test*.rb in the liblinear-ruby-swig/liblinear-1.8/ruby directory

AUTHOR:

Tom Zeng

Something went wrong with that request. Please try again.