Skip to content

Commit

Permalink
ARM: 5580/2: ARM TCM (Tightly-Coupled Memory) support v3
Browse files Browse the repository at this point in the history
This adds the TCM interface to Linux, when active, it will
detect and report TCM memories and sizes early in boot if
present, introduce generic TCM memory handling, provide a
generic TCM memory pool and select TCM memory for the U300
platform.

See the Documentation/arm/tcm.txt for documentation.

Signed-off-by: Linus Walleij <linus.walleij@stericsson.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
  • Loading branch information
Linus Walleij authored and Russell King committed Sep 15, 2009
1 parent 1824090 commit bc58177
Show file tree
Hide file tree
Showing 11 changed files with 525 additions and 0 deletions.
145 changes: 145 additions & 0 deletions Documentation/arm/tcm.txt
@@ -0,0 +1,145 @@
ARM TCM (Tightly-Coupled Memory) handling in Linux
----
Written by Linus Walleij <linus.walleij@stericsson.com>

Some ARM SoC:s have a so-called TCM (Tightly-Coupled Memory).
This is usually just a few (4-64) KiB of RAM inside the ARM
processor.

Due to being embedded inside the CPU The TCM has a
Harvard-architecture, so there is an ITCM (instruction TCM)
and a DTCM (data TCM). The DTCM can not contain any
instructions, but the ITCM can actually contain data.
The size of DTCM or ITCM is minimum 4KiB so the typical
minimum configuration is 4KiB ITCM and 4KiB DTCM.

ARM CPU:s have special registers to read out status, physical
location and size of TCM memories. arch/arm/include/asm/cputype.h
defines a CPUID_TCM register that you can read out from the
system control coprocessor. Documentation from ARM can be found
at http://infocenter.arm.com, search for "TCM Status Register"
to see documents for all CPUs. Reading this register you can
determine if ITCM (bit 0) and/or DTCM (bit 16) is present in the
machine.

There is further a TCM region register (search for "TCM Region
Registers" at the ARM site) that can report and modify the location
size of TCM memories at runtime. This is used to read out and modify
TCM location and size. Notice that this is not a MMU table: you
actually move the physical location of the TCM around. At the
place you put it, it will mask any underlying RAM from the
CPU so it is usually wise not to overlap any physical RAM with
the TCM. The TCM memory exists totally outside the MMU and will
override any MMU mappings.

Code executing inside the ITCM does not "see" any MMU mappings
and e.g. register accesses must be made to physical addresses.

TCM is used for a few things:

- FIQ and other interrupt handlers that need deterministic
timing and cannot wait for cache misses.

- Idle loops where all external RAM is set to self-refresh
retention mode, so only on-chip RAM is accessible by
the CPU and then we hang inside ITCM waiting for an
interrupt.

- Other operations which implies shutting off or reconfiguring
the external RAM controller.

There is an interface for using TCM on the ARM architecture
in <asm/tcm.h>. Using this interface it is possible to:

- Define the physical address and size of ITCM and DTCM.

- Tag functions to be compiled into ITCM.

- Tag data and constants to be allocated to DTCM and ITCM.

- Have the remaining TCM RAM added to a special
allocation pool with gen_pool_create() and gen_pool_add()
and provice tcm_alloc() and tcm_free() for this
memory. Such a heap is great for things like saving
device state when shutting off device power domains.

A machine that has TCM memory shall select HAVE_TCM in
arch/arm/Kconfig for itself, and then the
rest of the functionality will depend on the physical
location and size of ITCM and DTCM to be defined in
mach/memory.h for the machine. Code that needs to use
TCM shall #include <asm/tcm.h> If the TCM is not located
at the place given in memory.h it will be moved using
the TCM Region registers.

Functions to go into itcm can be tagged like this:
int __tcmfunc foo(int bar);

Variables to go into dtcm can be tagged like this:
int __tcmdata foo;

Constants can be tagged like this:
int __tcmconst foo;

To put assembler into TCM just use
.section ".tcm.text" or .section ".tcm.data"
respectively.

Example code:

#include <asm/tcm.h>

/* Uninitialized data */
static u32 __tcmdata tcmvar;
/* Initialized data */
static u32 __tcmdata tcmassigned = 0x2BADBABEU;
/* Constant */
static const u32 __tcmconst tcmconst = 0xCAFEBABEU;

static void __tcmlocalfunc tcm_to_tcm(void)
{
int i;
for (i = 0; i < 100; i++)
tcmvar ++;
}

static void __tcmfunc hello_tcm(void)
{
/* Some abstract code that runs in ITCM */
int i;
for (i = 0; i < 100; i++) {
tcmvar ++;
}
tcm_to_tcm();
}

static void __init test_tcm(void)
{
u32 *tcmem;
int i;

hello_tcm();
printk("Hello TCM executed from ITCM RAM\n");

printk("TCM variable from testrun: %u @ %p\n", tcmvar, &tcmvar);
tcmvar = 0xDEADBEEFU;
printk("TCM variable: 0x%x @ %p\n", tcmvar, &tcmvar);

printk("TCM assigned variable: 0x%x @ %p\n", tcmassigned, &tcmassigned);

printk("TCM constant: 0x%x @ %p\n", tcmconst, &tcmconst);

/* Allocate some TCM memory from the pool */
tcmem = tcm_alloc(20);
if (tcmem) {
printk("TCM Allocated 20 bytes of TCM @ %p\n", tcmem);
tcmem[0] = 0xDEADBEEFU;
tcmem[1] = 0x2BADBABEU;
tcmem[2] = 0xCAFEBABEU;
tcmem[3] = 0xDEADBEEFU;
tcmem[4] = 0x2BADBABEU;
for (i = 0; i < 5; i++)
printk("TCM tcmem[%d] = %08x\n", i, tcmem[i]);
tcm_free(tcmem, 20);
}
}
5 changes: 5 additions & 0 deletions arch/arm/Kconfig
Expand Up @@ -46,6 +46,10 @@ config GENERIC_CLOCKEVENTS_BROADCAST
depends on GENERIC_CLOCKEVENTS
default y if SMP && !LOCAL_TIMERS

config HAVE_TCM
bool
select GENERIC_ALLOCATOR

config NO_IOPORT
bool

Expand Down Expand Up @@ -649,6 +653,7 @@ config ARCH_U300
bool "ST-Ericsson U300 Series"
depends on MMU
select CPU_ARM926T
select HAVE_TCM
select ARM_AMBA
select ARM_VIC
select GENERIC_TIME
Expand Down
5 changes: 5 additions & 0 deletions arch/arm/include/asm/cputype.h
Expand Up @@ -63,6 +63,11 @@ static inline unsigned int __attribute_const__ read_cpuid_cachetype(void)
return read_cpuid(CPUID_CACHETYPE);
}

static inline unsigned int __attribute_const__ read_cpuid_tcmstatus(void)
{
return read_cpuid(CPUID_TCM);
}

/*
* Intel's XScale3 core supports some v6 features (supersections, L2)
* but advertises itself as v5 as it does not support the v6 ISA. For
Expand Down
31 changes: 31 additions & 0 deletions arch/arm/include/asm/tcm.h
@@ -0,0 +1,31 @@
/*
*
* Copyright (C) 2008-2009 ST-Ericsson AB
* License terms: GNU General Public License (GPL) version 2
*
* Author: Rickard Andersson <rickard.andersson@stericsson.com>
* Author: Linus Walleij <linus.walleij@stericsson.com>
*
*/
#ifndef __ASMARM_TCM_H
#define __ASMARM_TCM_H

#ifndef CONFIG_HAVE_TCM
#error "You should not be including tcm.h unless you have a TCM!"
#endif

#include <linux/compiler.h>

/* Tag variables with this */
#define __tcmdata __section(.tcm.data)
/* Tag constants with this */
#define __tcmconst __section(.tcm.rodata)
/* Tag functions inside TCM called from outside TCM with this */
#define __tcmfunc __attribute__((long_call)) __section(.tcm.text) noinline
/* Tag function inside TCM called from inside TCM with this */
#define __tcmlocalfunc __section(.tcm.text)

void *tcm_alloc(size_t len);
void tcm_free(void *addr, size_t len);

#endif
1 change: 1 addition & 0 deletions arch/arm/kernel/Makefile
Expand Up @@ -34,6 +34,7 @@ obj-$(CONFIG_OABI_COMPAT) += sys_oabi-compat.o
obj-$(CONFIG_ARM_THUMBEE) += thumbee.o
obj-$(CONFIG_KGDB) += kgdb.o
obj-$(CONFIG_ARM_UNWIND) += unwind.o
obj-$(CONFIG_HAVE_TCM) += tcm.o

obj-$(CONFIG_CRUNCH) += crunch.o crunch-bits.o
AFLAGS_crunch-bits.o := -Wa,-mcpu=ep9312
Expand Down
2 changes: 2 additions & 0 deletions arch/arm/kernel/setup.c
Expand Up @@ -45,6 +45,7 @@

#include "compat.h"
#include "atags.h"
#include "tcm.h"

#ifndef MEM_SIZE
#define MEM_SIZE (16*1024*1024)
Expand Down Expand Up @@ -749,6 +750,7 @@ void __init setup_arch(char **cmdline_p)
#endif

cpu_init();
tcm_init();

/*
* Set up various architecture-specific pointers
Expand Down

0 comments on commit bc58177

Please sign in to comment.