Skip to content

Latest commit

 

History

History
1869 lines (1435 loc) · 69.9 KB

manual.md

File metadata and controls

1869 lines (1435 loc) · 69.9 KB

LOGO

PANDA User Manual

Table of Contents

Overview

PANDA (Platform for Architecture-Neutral Dynamic Analysis) is a whole-system dynamic analysis engine based on QEMU 1.0.1. Its strengths lie in rapid reverse engineering of software. PANDA includes a system for recording and replaying execution, a framework for running LLVM analysis on executing code, and an easily extensible plugin architecture. Together, these basic tools let you rapidly understand how individual programs work and how they interact at the system level.

Quickstart

To build PANDA, use panda_install.bash, which installs all the dependencies and builds PANDA. Don't worry; it won't actually install PANDA to a system directory, despite the name. If you already have the dependencies you can just run qemu/build.sh. Once it's built, you will find the QEMU binaries in i386-softmmu/qemu-system-i386, x86_64-softmmu/qemu-system-x86_64, and arm-softmmu/qemu-system-arm. You'll need to create a qcow (disk image) for use with PANDA; the internet has documentation on how to do this.

We've found that the most effective workflow in PANDA is to collect a recording of a piece of execution of interest and then analyze that recording over and over again. You can read more about record/replay in our docs. For now, what you need to know is that record/replay allows you to repeat an execution trace with all data exactly the same over and over again. You can then analyze the execution and slowly build understanding about where things are stored, what processes are running, when the key execution events happen, etc. Pictorially:

PANDA workflow

Record

You can record execution by using the begin_record and end_record commands in the QEMU monitor. To use the monitor, run QEMU with -monitor stdio (there are more complicated setups too). Type begin_record "replay_name" to start the recording process, and use end_record to end it.

Recording will create two files: replay_name-rr-snp, the VM snapshot at beginning of recording, and replay_name-rr-nondet.log, the log of all nondeterministic inputs. You need both of those to reproduce the segment of execution.

Replay

You can replay a recording (those two files) using qemu-system-$arch -replay replay_name. Make sure you pass the same memory size to the VM as you did for the recording. Otherwise QEMU will fail with an incomprehensible error.

Analysis

Once you've captured a replay, you should be able to play it over and over again. We typically begin by using standard analyses to try and get a basic picture of what's going on, followed by custom plugins to get more specific analysis. Plugins reside in the panda_plugins directory. Although the process depends on the example, some of the plugins we often use to begin analysis are asidstory, stringsearch, and file_taint.

A Tour of QEMU

In order to use PANDA, you will need to understand at least some things about the underlying emulator, QEMU. In truth, the more you know about QEMU the better, but that it is a complicated beast

QEMU's Monitor

This is how you can access and control the emulator, to do all manner of things including connecting an ISO to the CD drive and recording execution. For full details on what you do with the monitor, consult the QEMU manual.

The most common way of interacting with the monitor is just via stdio in the terminal from which you originally entered the commandline that started up PANDA. To get this to work, just add the following to the end of your commandline: --monitor stdio. There are also ways to connect to the monitor over a telnet port etc -- refer to ethe QEMU manual for details.

Here are few monitor functions we commonly need with PANDA.

  • Connect an ISO to the cd drive: change ide1-cd0 foo.iso.
  • Begin/end recording: begin_record foo and end_record.

Emulation details

QEMU emulates a large number of instruction set architectures, but only a few of them are heavily used by PANDA reverse engineers. In particular, PANDA support is reasonably strong only for x86, arm, and ppc.

It is necessary to have a mental model of how QEMU emulates guest code in order to write plugins. Consider a basic block of guest code that QEMU wants to emulate. It disassembles that code into guest instructions, one by one, simultaneously assembling a parallel basic block of instructions in an intermediate language (IL). This intermediate language is described in a README if you are interested. From this IL, QEMU generates a corresponding basic block of binary code that is directly executable on the host. Note that it is from this QEMU IL that PANDA generates LLVM instructions, as the two are fairly close already (our LLVM translation is actually borrowed from the S2E project). This basic block of code is actually executed, on the host, in order to emulate guest behavior. QEMU toggles between translating guest code and executing the translated binary versions. As a critical optimization, QEMU maintains a cache of already translated basic blocks.

Here is how some of the plugins fit into that emulation sequence.

  • PANDA_CB_BEFORE_BLOCK_TRANSLATE is before the initial translation of guest code. We don't know length of the block at this point.

  • PANDA_CB_AFTER_BLOCK_TRANSLATE is after the translation of guest code. In this case we know how long the block is.

  • PANDA_CB_BEFORE_BLOCK_EXEC is after the block of guest code has been translated into code that can run on the host and immediately before QEMU runs it.

  • PANDA_CB_AFTER_BLOCK_EXEC is immediately after the block of translated guest code has actually been run on the host.

  • PANDA_CB_BEFORE_BLOCK_EXEC_INVALIDATE_OPT is right after the guest code has been translated into code that can run on the host, but before it runs. In some situations, plugin code determines that it is necessary to re-translate and can trigger that here, in particular in order to support LLVM lifting and taint.

  • PANDA_CB_INSN_TRANSLATE is just before an instruction is translated, and allows inspection of the instruction to control how translation inserts other plugin callbacks such as the INSN_EXEC one.

  • PANDA_CB_INSN_EXEC is just before host code emulating a guest instruction executes, but only exists if INSN_TRANSLATE callback returned true.

NOTE. Although it is a little out of date, the explanation of emulation in Fabrice Bellard's original USENIX paper on QEMU is quite a good read. "QEMU, a Fast and Portable Dynamic Translator", USENIX 2005 Annual Technical Conference.

NOTE: QEMU has an additional cute optimization called chaining that links up cached translated blocks of code in such a way that they emulation can transition from one to another without the emulator being involved. This is enabled for record but currently turned off for replay in order to more easily support callbacks before and after a basic block executes.

What is env?

PANDA plugins need access to cpu registers and state. The QEMU abstract data type for this CPUState and is accessed through a global pointer env. Note that the actual type for an emulated CPU is made more specific in the qemu/target-xxx/cpu.h directory where xxx is the architecture in question. For instance, in qemu/target-i386/cpu.h, we find it redefined as CPUX86State, where we also find convenient definitions such as EAX, EBX, and EIP. Other information of interest such as hidden flags, segment registers, idt, and gdt are all available via `env.

Useful PANDA functions

These functions don't really form an API to QEMU or PANDA, but they are useful for controlling PANDA or interacting with QEMU.

QEMU translation control

void panda_do_flush_tb(void);

This function requests that the translation block cache be flushed as soon as possible. If running with translation block chaining turned off (e.g. when in LLVM mode or replay mode), this will happen when the current translation block is done executing.

Flushing the translation block cache is additionally necessary if the plugin makes changes to the way code is translated. For example, by using panda_enable_precise_pc.

WARNING: failing to flush the TB before turning on something that alters code translation may cause QEMU to crash! This is because QEMU's interrupt handling mechanism relies on translation being deterministic (see the search_pc stuff in translate-all.c for details).

void panda_disable_tb_chaining(void);
void panda_enable_tb_chaining(void);

These functions allow plugins to selectively turn translation block chaining on and off, regardless of whether the backend is TCG or LLVM, and independent of record and replay.

Precise program counter

By default, QEMU does not update the program counter after every instruction.

void panda_enable_precise_pc(void);
void panda_disable_precise_pc(void);

These functions enable or disable precise tracking of the program counter. After enabling precise PC tracking, the program counter will be available in env->panda_guest_pc and can be assumed to accurately reflect the guest state.

Some plugins (taint2, callstack_instr, etc) add instrumentation that runs inside a basic block of emulated code. If such a plugin is enabled mid-replay then it is important to flush the cache so that all subsequent guest code will be properly instrumented.

Memory access

PANDA has callbacks for virtual and physical memory read and write, but these are off by default due to overhead.

void panda_enable_memcb(void);
void panda_disable_memcb(void);

Use these two functions to enable and disable the memory callbacks.

int panda_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, int len, int is_write);

This function allows a plugin to read or write len bytes of guest physical memory at addr into or from the supplied buffer buf. This function differs from QEMU's cpu_physical_memory_rw in that it will never access I/O, only RAM. This function returns zero on success, and negative values on failure (page not mapped).

int panda_virtual_memory_rw(CPUState *env, target_ulong addr, uint8_t *buf, int len, int is_write);

This function is analogous to the previous one except that it uses the current virtual to physical mapping (page tables) to permit read and write of guest memory. It has the same contract but the addr is a guest virtual address for the current process.

LLVM control

void panda_enable_llvm(void);
void panda_disable_llvm(void);

These functions enable and disable the use of the LLVM JIT in replacement of the TCG (QEMU intermediate language and compiler) backend. Here, an additional translation step is added from the TCG IR to the LLVM IR, and that is executed on the LLVM JIT. Currently, this only works when QEMU is starting up, but we are hoping to support dynamic configuration of code generation soon.

Miscellany

void panda_memsavep(FILE *out);

Saves a physical memory snapshot into the open file pointer out. This function is guaranteed not to perturb guest state.

target_ulong panda_current_asid(CPUState *env);

Returns the current asid for a variety of architectures (cr3 for x86, e.g.).

bool panda_in_kernel(CPUState *env);

Returns true if the processor is in the privilege level corresponding to executing kernel code for various architectures.

void panda_disas(FILE *out, void *code, unsigned long size);

Writes a textual representation of disassembly of the guest code at virtual address code of size bytes.

Record/Replay Details

Introduction

PANDA supports whole system deterministic record and replay in whole system mode on the i386, x86_64, and arm targets. We hope to add more soon; for example, partial SPARC support exists but is not yet reliable.

Background

Deterministic record and replay is a technique for capturing the non-deterministic inputs to a system -- that is, the things that would cause a system to behave differently if it were re-started from the same point with the same inputs. This includes things like network packets, hard drive reads, mouse and keyboard input, etc.

Our implementation of record and replay focuses on reproducing code execution. That is, the non-deterministic inputs we record are changes made to the CPU state and memory -- DMA, interrupts, in instructions, and so on. Unlike many record and replay implementations, we do not record the inputs to devices; this means that one cannot "go live" during a recording, but it greatly simplifies the implementation. To get an idea of what is recorded, imagine drawing a line around the CPU and RAM; things going from the outside world to the CPU and RAM, crossing this line, must be recorded.

Record and replay is extremely useful because it enables many sophisticated analysis that are too slow to run in real-time; for example, trying to do taint flow analysis makes the guest system so slow that it cannot make network connections (because remote systems time out before the guest can process the packets and respond). By creating a recording, which has fairly modest overhead, and performing analyses on the replayed execution, one can do analyses that simply aren't possible to do live.

Usage

Recording is controlled with two QEMU monitor commands, begin_record and end_record:

  • begin_record <name>

    Starts a recording session, saved as <name>. Note that there is currently no safeguard to prevent overwriting previous recordings, so be careful to choose a unique name.

    The recording log consists of two parts: the snapshot, which is named <name>-rr-snp, and the recording log, which is named <name>-rr-nondet.log.

  • end_record

    Ends an active recording session. The guest will be paused, but can be resumed and another recording can be made once the guest is resumed.

A commandline flag -record-from <snapshot>:<record-name> to restores a qcow2 snapshot and immediately start recording is also provided for convenience.

Start replays from the command line using the -replay <name> option.

Of course, just running a replay isn't very useful by itself, so you will probably want to run the replay with some plugins enabled that perform some analysis on the replayed execution. See docs/PANDA.md for more details.

Sharing Recordings

To make it easier to share record/replay logs, PANDA has two scripts, rrpack.py and rrunpack.py, that bundle up and compress a recording. These can be found in the scripts directory. To pack up a recording, just use:

scripts/rrpack.py <name>

This will bundle up <name>-rr-snp and <name>-rr-nondet.log and put them into PANDA's packed record/replay format in a file named <name>.rr. This file can be unpacked and verified using:

scripts/rrunpack.py <name>.rr

A central repository for sharing record/replay logs is available at the PANDA Share website.

Plugins

A great deal of the power of PANDA comes from its abiltiy to be extended with plugins. Plugins are an easy way to extend the features of PANDA, and allow a wide range of dynamic analyses to be implemented without modifying QEMU.

Using Plugins

You will probably begin experimenting with PANDA by just using the plugins others have written. To load a PANDA plugin, you must specify it via -panda on the QEMU command line followed by the plugin name. You can specify multiple plugins as a semicolon-separated list, and you can give the plugins arguments as a comma-separated list after the plugin's name and a colon. For example:

-panda 'stringsearch;callstack_instr;llvm_trace:base=/tmp,foo=6'

This loads the stringsearch, callstack_instr, and llvm_trace plugins and passes llvm_trace the arguments base=dir and foo=bar. Note that the ; character must be escaped in most shells; you can either surround the arguments with quotes (as in this example) or just escape the semicolon itself, e.g. base=dir\;foo=bar.

Plugins are automatically unloaded when a replay ends.

Plugin Architecture

Plugins allow you to register callback functions that will be executed at various points as QEMU executes. While it is possible to register and run callbacks during record, it is more usual for plugins to be used during replay. The PANDA RE workflow is (see Overview section for diagram) record, then replay multiple times under a variety of plugins, possibly some of which have been written for the RE task at hand.

Some of these callbacks and where they occur in QEMU's execution are shown below:

Callback Diagram

Order of execution

If you are using multiple plugins that work together to perform some analysis, you may care about what order plugins' callbacks execute in, since some operations may not make sense if they're done out of order.

The bad news is that PANDA does not guarantee any fixed ordering for its callbacks across different plugins. In the current implementation, each callback of a given type will be executed in the order it was registered. Although this creates a deterministic order for callbacks of a specific type within one plugin, a fixed callback execution order among multiple distinct plugins can not be ensured. (Usually, this order corresponds to the order in which the plugins were loaded; however, because callbacks can be registered at any time throughout a plugin's lifetime, this is not guaranteed to hold true). This could change in the future, though, and in general it's not a good idea to rely on it.

The good news is that there's a better way to enforce an ordering. As described in the next section, plugins support explicit mechanisms for interacting with each other. In particular, you can create plugin callbacks, which allow plugins to notify each other when certain events inside the plugin occur. For example, if you wanted to ensure that something in Plugin B always happens after Plugin A does some action foo, Plugin A would create an on_foo callback that Plugin B could then register with. This is much safer and more robust than trying to guess the order in which the plugin callbacks will be called.

See the Plugin-Plugin Interaction section for details on this mechanism.

Writing a Plugin

To create a PANDA plugin, create a new directory inside plugins, and copy Makefile.example into plugins/${YOUR_PLUGIN}/Makefile. Then edit the Makefile to suit the needs of your plugin (at minimum, you should change the plugin name). By default, the source file for your plugin must be named ${YOUR_PLUGIN}.(c|cpp), but this can be changed by editing the Makefile.

To have your plugin compiled as part of the main QEMU build process, you should add it to plugins/config.panda. Note that plugins in that list can be disable (excluded from compilation) by commenting them out with a #. Plugins can currently be written in either C or C++.

When you run make, the QEMU build system will build your plugin for each target architecture that was specified in ./configure --target-list=. This means that architecture-specific parts of your plugin should be guarded using code like:

#if defined(TARGET_I386)
// Do x86-specific stuff
#elif defined(TARGET_ARM)
// Do ARM-specific stuff
#endif

It also means that your code can use the various target-specific macros, such as target_ulong, in order to get code that works with all of QEMU's architectures.

Plugin Initialization and Shutdown

All plugins are required to contain, at minimum, two functions with the following signatures:

bool init_plugin(void *self);
void uninit_plugin(void *self);

The single void * parameter is a handle to the plugin; because this comes from dlopen, it can be safely used with dlsym and friends. This handle is also what should be passed to panda_register_callback in order to register a plugin function as a callback.

In general, init_plugin should perform any setup the plugin needs, and call panda_register_callback to tell PANDA what plugin functions to call for various events. For example, to register a callback that will be executed after the execution of each basic block, you would use the following code:

pcb.after_block_exec = after_block_callback;
panda_register_callback(self, PANDA_CB_AFTER_BLOCK_EXEC, pcb);

The uninit_plugin function will be called when the plugin is unloaded. You should free any resources used by the plugin here, as plugins can be unloaded in mid replay or from the monitor – so you can't rely on QEMU doing all your cleanup for you.

Callback and Plugin Management

Typically in the init_plugin function, you will register a number of callbacks.

void panda_register_callback(void *plugin, panda_cb_type type, panda_cb cb);

Registers a callback with PANDA. The type parameter specifies what type of callback, and cb is used for the callback itself (panda_cb is a union of all possible callback signatures).

PANDA_CB_BEFORE_BLOCK_TRANSLATE,    // Before translating each basic block
PANDA_CB_AFTER_BLOCK_TRANSLATE,     // After translating each basic block
PANDA_CB_BEFORE_BLOCK_EXEC_INVALIDATE_OPT,    // Before executing each basic block (with option to invalidate, may trigger retranslation)
PANDA_CB_BEFORE_BLOCK_EXEC,         // Before executing each basic block
PANDA_CB_AFTER_BLOCK_EXEC,          // After executing each basic block
PANDA_CB_INSN_TRANSLATE,    // Before an instruction is translated
PANDA_CB_INSN_EXEC,         // Before an instruction is executed
PANDA_CB_VIRT_MEM_BEFORE_READ,  // Before read of virtual memory
PANDA_CB_VIRT_MEM_BEFORE_WRITE, // Before write to virtual memory
PANDA_CB_PHYS_MEM_BEFORE_READ,  // Before read of physical memory
PANDA_CB_PHYS_MEM_BEFORE_WRITE, // Before write to physical memory
PANDA_CB_VIRT_MEM_AFTER_READ,   // After read of virtual memory
PANDA_CB_VIRT_MEM_AFTER_WRITE,  // After write to virtual memory
PANDA_CB_PHYS_MEM_AFTER_READ,   // After read of physical memory
PANDA_CB_PHYS_MEM_AFTER_WRITE,  // After write to physical memory
PANDA_CB_HD_READ,           // Each HDD read
PANDA_CB_HD_WRITE,          // Each HDD write
PANDA_CB_GUEST_HYPERCALL,   // Hypercall from the guest (e.g. CPUID)
PANDA_CB_MONITOR,           // Monitor callback
PANDA_CB_CPU_RESTORE_STATE,  // In cpu_restore_state() (fault/exception)
PANDA_CB_BEFORE_REPLAY_LOADVM,     // at start of replay, before loadvm
PANDA_CB_VMI_PGD_CHANGED,   // After CPU's PGD is written to
PANDA_CB_REPLAY_HD_TRANSFER,    // in replay, hd transfer
PANDA_CB_REPLAY_NET_TRANSFER,   // in replay, transfers within network card (currently only E1000)
PANDA_CB_REPLAY_BEFORE_CPU_PHYSICAL_MEM_RW_RAM,  // in replay, just before RAM case of cpu_physical_mem_rw
PANDA_CB_REPLAY_AFTER_CPU_PHYSICAL_MEM_RW_RAM,   // in replay, just after RAM case of cpu_physical_mem_rw
PANDA_CB_REPLAY_HANDLE_PACKET,    // in replay, packet in / out

For more information on each callback, see the "Callbacks" section.

void * panda_get_plugin_by_name(const char *name);

Retrieves a handle to a plugin, given its name (the name is just the base name of the plugin's filename; that is, if the path to the plugin is qemu/panda/panda_test.so, the plugin name will be panda_test.so).

This can be used to allow one plugin to call functions another, since the handle returned is usable with dlsym.

bool   panda_load_plugin(const char *filename);

Load a PANDA plugin. The filename parameter is currently interpreted as a simple filename; no searching is done (this may change in the future). This can be used to allow one plugin to load another.

void   panda_unload_plugin(void *plugin);

Unload a PANDA plugin. This can be used to allow one plugin to unload another one.

void   panda_disable_plugin(void *plugin);

Disables callbacks registered by a PANDA plugin. This can be used to allow one plugin to temporarily disable another one.

void   panda_enable_plugin(void *plugin);

Enables callbacks registered by a PANDA plugin. This can be used to re-enable callbacks of a plugin that was disabled.

Argument handling

PANDA allows plugins to receive arguments on the command line. For instance, consider that example from above.

-panda 'stringsearch;callstack_instr;llvm_trace:base=/tmp,foo=6'

The llvm_trace plugin has two arguments, base and foo with values /tmp and 6. In init_plugin for llvm_trace, include the following code to retrieve just the arguments for the llvm_trace plugin and then to parse the individual arguments.

panda_arg_list *args = panda_get_args("llvm_trace");
uint32_t foo = panda_parse_uint32(args, "foo", 0);
char *base = panda_parse_string(args, "base", NULL);

Here is the complete list of PANDA arg parsing functions.

target_ulong panda_parse_ulong(panda_arg_list *args, const char *argname, target_ulong defval);
uint32_t panda_parse_uint32(panda_arg_list *args, const char *argname, uint32_t defval);
uint64_t panda_parse_uint64(panda_arg_list *args, const char *argname, uint64_t defval);
double panda_parse_double(panda_arg_list *args, const char *argname, double defval);
bool panda_parse_bool(panda_arg_list *args, const char *argname);
const char *panda_parse_string(panda_arg_list *args, const char *argname, const char *defval);

Note that calling panda_get_args allocates memory to store the list, which should be freed after use with panda_free_args.

void panda_free_args(panda_arg_list *args);

Frees an argument list created with panda_get_args.

Plugin-plugin interaction

It's often very handy to be able to allow plugins to interact with one another. For example, the taint2 tracks taint, and exposes an API for labeling data and querying what taint labels are on some data. This allows one to create plugins that are small and do one thing well but can be composed together to accomplish complex tasks.

There three kinds of plugin-plugin-interaction: exposing an API that other plugins can call, defining callback points that other plugins can register with to be notified when something of interest occurs, and turning another plugin on or off.

Interactions between plugins, however, are tricky because PANDA plugins are dynamically loaded. Thus, even if Plugin A has a function intended to be called by another plugin, it is painful to obtain access to that function from Plugin B (hint: dlsym is involved). Further, the code necessary to iterate over a sequence of callbacks is annoying and formulaic.Software engineering to the rescue! panda_plugin_plugin.h provides a number of convenient macros that simplify arranging for these two types of plugin interaction. Here is how to use them.

Plugin API

To export an API for use in another plugin:

  1. Create a file named <plugin>_int_fns.h in the plugin's directory and list each function's prototype, along with any data types it requires.
  2. Create a file named <plugin>_int.h in the plugin's directory looks like:
typedef void YourCustomType;
typedef void YourOtherCustomType;

#include "<plugin>_int_fns.h"

This slightly insane-looking arrangement is necessary because the apigen.py script (which is invoked from build.sh) uses pycparser to parse each plugin's <plugin>_int.h header and generate the necessary code to seamlessly use the API from other plugins. Unfortunately, pycparser is not great at understanding custom types (i.e. anything that's not in the standard system headers), so you have to use typedefs to make pycparser happy. This is indeed ridiculous, and if you have a better way to do it we'd welcome your pull request with open arms.

At build time, apigen.py will automatically find all the plugins with those files, and generate a <plugin>_ext.h file for each one, in the plugin's directory. To use the API, one simply needs to #include "../<plugin>/<plugin>_ext.h" and then call init_<plugin>_api() and ensure that its return value is true.

For example, to use the functions exported by the sample plugin, you can do something like:

#include "../sample/sample_ext.h"

void some_other_callback() {
    // This function is defined in sample_ext.h but can be used here
    sample_function();
}

bool init_plugin(void *self) {
    if (!init_sample_api()) return false;
    return true;
}

Plugin callbacks

Suppose you have Plugin A and Plugin B, and Plugin B wants to be notified when something interesting happens in Plugin A. There are two halves to this: creating the pluggable place in Plugin A, and registering a callback implemented in Plugin B with Plugin A.

In order to create the pluggable place in Plugin A, you have to do the following.

  1. Determine at precisely what line in A you want callbacks to run. Also, decide what arguments the callback functions will take. Also also, choose a name for the callback, e.g., foo.

  2. Create a type for the callback function. Put this in the .h file for Plugin A. If the callback's name is foo, then this type has to be called foo_t.

  3. Use the macro PPP_RUN_CB at the line chosen in 1. This macro takes all the arguments you want the callback to get, so it will look like a function call. But it will expand into code that runs all callbacks registered to run there, handing each all those args.

  4. In the same file you edited in 3, use the macro PPP_CB_BOILERPLATE somewhere above the line decided in 1, just not inside of a function. This macro takes a single argument, the callback name, and expands into a bunch of necessary code: a global array of function pointers, an integer keeping track of how many functions have been registered, and a pair of functions that can be used from outside Plugin A to register callbacks.

  5. In the same file you edited in 3, in the extern "C" { portion near the top of the file, add PPP_PROT_REG_CB(foo);. For more information on this, see panda_plugin_plugin.h.

  6. Remember to #include "panda_plugin_plugin.h" at the top of the edited source file.

In order to register a callback with Plugin A that is defined in Plugin B, all you need to do is use the PPP_REG_CB macro in Plugin B's init_plugin function and include Plugin A's .h file where the type for the callback is defined (see #2). This macro takes three arguments. The first is the name of plugin A (as in, its name in the Makefile). The second is the callback name. The third is the function in B that is to be registered with A.

A good example of how all this fits together can be seen in the interaction between the stringsearch and tstringsearch plugins. stringsearch is plugin A. It has one pluggable site: when a string match occurs. The name of that callback is on_ssm for "on stringsearch match". Look in stringsearch.h to see the type definition for the callback functions on_ssm_t. Look in stringsearch.cpp for the macro invocations of PPP_RUN_CB and PPP_CB_BOILERPLATE. tstringsearch is plugin B. It contains a function tstringsearch_match which it registers with stringsearch via the PPP_REG_CB macro in order to apply taint labels to any string match. Their powers combined, these two plugins allow us to perform a complicated task (content-based taint labeling).

Personal Plugins

You can also pull plugin code from some other directory, i.e., not from panda/panda/plugins. This allows you to maintain a separate repository of your personal plugins.

  1. Create a directory in which you will create personal plugins. /home/you/personal
  2. Create a subdirectory personal/panda/plugins there as well.
  3. Say you have written a plugin you want to call new_cool. Create a subdirectory personal/panda/plugins/new_cool and put the code for the new plugin there.
  4. Create a file panda/plugins/config.panda with names of enabled plugins as you would normally.
  5. You can use the the same makefile set-up as with regular plugins.
  6. configure with --extra-plugins-path=/home/you/personal_plugins
  7. Build as usual and you should compile new_cool plugin and its compiled code will be deposited in, e.g., i386-softmmu/panda_plugins

Enabling or Disabling Plugins

PANDA offers four functions for enabling and disabling other plugins at runtime: panda_load_plugin, panda_unload_plugin, panda_enable_plugin, and panda_disable_plugin. The former completely load or unload plugins while the latter allow to temporarily enable or disable callbacks registered by a given plugin). For their prototypes, have a look at panda_plugin.h.

Plugin Zoo

We have written a bunch of generic plugins for use in analyzing replays. Each one has a USAGE.md file linked here for further explanation.

Taint-related plugins

  • taint2 - Modern taint plugin. Required by most other taint plugins. Already ported from panda1
  • dead_data - Track dead data (tainted, but not used in branches). Already ported from panda1
  • ida_taint2 - IDA taint integration.
  • file_taint - Syscall and OSI-based automatic tainting of file input by filename. Already ported from panda1
  • tainted_branch - Find conditional branches where the choice depends on tainted data. Already ported from panda1
  • tainted_instr - Find instructions which process tainted data.
  • taint_compute_numbers - Analyze taint compute numbers (computation tree depth) for tainted data.
  • tstringsearch - Automatically taint all occurrences of a certain string.
Old generation
  • taint - Old taint plugin.
  • ida_taint - IDA taint integration for old taint plugin.

Plugins related to Tappan Zee (North) Bridge

Callstack Tracking

Operating System Introspection (OSI) plugins

System call logging & analysis

Current generation
  • syscalls2 - Modern syscalls tracking. Already ported from panda1
  • win7proc - Semantic pandalog interpretation of syscalls for Windows 7 x86.
Old generation

Miscellaneous

  • bir - Binary Information Retrieval. Used to correspond executables on disk with code executing in memory.
  • tralign - Align parts of execution traces.
  • bufmon - Monitor all memory accesses to a particular memory region.
  • coverage
  • llvm_trace - Record trace of dynamic information necessary for later analysis.
  • lsmll
  • memsavep - Create a dump of physical memory at a given point in a replay. The dump can then be fed to Volatility. Already ported from panda1
  • memstats
  • network
  • pmemaccess
  • rehosting
  • replaymovie - Write a series of framebuffer screenshots to the current directory. Use movie.sh to turn them into a movie.
  • sample
  • scissors - Cut out a smaller piece of a given replay. Already ported from panda1
  • useafterfree - Track memory allocations and search for uses after frees.

Pandalog

Introduction

PANDA analyses run on whole system replays and the clear temptation is to just print out what you learn as you learn it. So panda plugins often begin life peppered with print statements. There is nothing wrong with print statements. But, as a plugin matures, it is usual for the consumers of those print statements to yearn for more compact, more parseable output. Pandalog provides this in the form of protocol buffer messages, streamed to a file through zlib's file access functions.

Design

Pandalog is designed to be

  1. Fast to read and write
  2. Small log size
  3. Easy to add to a plugin
  4. Easy to write code that reads the log
  5. Useable from any C or C++ panda plugin

Goals 1 and 2 are (arguably) provided by Google's protocol buffers. Protocol buffers optimize for small message size. Marshalling / unmarshalling is reasonably speedy. Better than JSON. We would have liked to use something like flatbuffers (also from Google), which is optimized more for read/write speed (we want FAST plugins, dammit). But this would have violated goal 5, as there is no way to auto-generate code for C with flatbuffers, as yet. A big design goal here (3) was for the logging spec to be distributed throughout the plugins. That is, if new plugin foo wants to write something to the pandalog, it should only have to specify what new fields it wants to add to the pandalog and add the actual logging statements.

Adding PANDA Logging to a Plugin

The asidstory plugin is a good example. Two small additions are all that are required to add pandalogging.

First, a new file was added to the plugin directory

$ cd plugins/asidstory/
$ cat asidstory.proto
optional uint64 asid = 3;
optional string process_name = 4;
optional uint32 process_id = 5;

This file contains a snippet from a protocol buffer schema. It indicates that this plugin will be adding three new optional fields to the pandalog, one for the asid (address space id), one for the process_name, and another for the process_id. Note that these fields are given tag numbers. This is important in so far as no two protobuf fields can have the same number (we don't know why). That is a global constraint you need to be aware of across all plugins. If asidstory uses slot 3, then plugin foo better not try to use it as well. Don't worry; if you screw this up, you'll get an error at build time.

Second, the actual logging message was inserted into asidstory.cpp

extern "C" {
...
#include "pandalog.h"
...
}
...
int asidstory_before_block_exec(CPUState *env, TranslationBlock *tb) {
...
       if (pandalog) {
        if (last_name == 0
            || (p->asid != last_asid)
            || (p->pid != last_pid)
            || (0 != strcmp(p->name, last_name))) {
            Panda__LogEntry ple = PANDA__LOG_ENTRY__INIT;
            ple.has_asid = 1;
            ple.asid = p->asid;
            ple.has_process_id = 1;
            ple.process_id = p->pid;
            ple.process_name = p->name;
            pandalog_write_entry(&ple);
            last_asid = p->asid;
            last_pid = p->pid;
            free(last_name);
            last_name = strdup(p->name);
        }
    }
...

The logging message was inserted into the function asidstory_before_block_exec, and the logic is complicated by the fact that we are keeping track of the last asid, process name, and process id. When any of them change, we write a pandalog message. All of that is incidental.

Note that we have available to us a global pandalog, which we can use to determine if panda logging is turned on.

To add the logging message, you have to create the ple, initializing it as so:

Panda__LogEntry ple = PANDA__LOG_ENTRY__INIT;

That ple is just a C struct, defined in autogenerated code. Look in panda/qemu/panda/pandalog.pb-c.h for the typedef of Panda__LogEntry. Once you have a ple, you just populate it with the fields you want logged. Note that, if fields are optional, there is always a has_fieldname bool you need to set to indicate its presence. Well, not quite. If the field is a pointer (an array or a string), a null pointer stands in for has_fieldname=0.

Here is the part of the code above in which we populate the struct for logging

ple.has_asid = 1;
ple.asid = p->asid;
ple.has_process_id = 1;
ple.process_id = p->pid;
ple.process_name = p->name;

Now all that is left is to write the entry to the pandalog.

pandalog_write_entry(&ple);

Building

In order to use pandalogging, you will have to re-run build.sh.

This build script has been modified to additionally run a new script panda/pp.sh, which peeks into all of the plugin directories, and looks for .proto snippets, concatenating them all together into a single file: panda/qemu/panda/pandalog.proto. This script then runs protoc-c on that specification to generate two files: panda/qemu/panda/pandalog.pb-c.[ch].

Feel free to peek at any of those three auto-generated files. In particular, you will probably want to consult the header since it defines the logging struct Panda__LogEntry, as indicated above.

Pandalogging During Replay

PANDA logging is enabled at runtime with a new command-line arg.

--pandalog filename

Any specified plugins that write to the pandalog will log to that file, which is written via zlib file access functions for compression.

Looking at the Logfile

There is a small program in panda/qemu/panda/pandalog_reader.cpp. Compilation directions are at the head of that source file.

You can read a pandalog using this little program and also see how easy it is to unmarshall the pandalog. Here's how to use it and some of its output.

$ ./pandalog_reader /tmp/pandlog | head
instr=16356  pc=0xc12c3586 :  asid=2 pid=171 process=[jbd2/sda1-8]
instr=78182  pc=0xc12c3586 :  asid=2 pid=4 process=[kworker/0:0]
instr=80130  pc=0xc12c3586 :  asid=2 pid=171 process=[jbd2/sda1-8]
instr=142967  pc=0xc12c3586 :  asid=2 pid=4 process=[kworker/0:0]
instr=209715  pc=0xc12c3586 :  asid=7984000 pid=2511 process=[sshd]
instr=253940  pc=0xc12c3586 :  asid=2 pid=4 process=[kworker/0:0]
instr=256674  pc=0xc12c3586 :  asid=5349000 pid=2512 process=[bash]
instr=258267  pc=0xc12c3586 :  asid=7984000 pid=2511 process=[sshd]
instr=262487  pc=0xc12c3586 :  asid=2 pid=4 process=[kworker/0:0]
instr=268164  pc=0xc12c3586 :  asid=5349000 pid=2512 process=[bash]

Note that there are two required fields always added to every pandalog entry: instruction count and program counter. The rest of thes log messages come from the asidstory logging.

External References

You may want to search google for "Protocol Buffers" to learn more about it.

LLVM

PANDA uses the LLVM architecture from the S2E project. This means you can translate from QEMU's intermediate representation, TCG, to LLVM IR, which is easier to understand and platform-independent. We call this process "lifting". Lifting has non-trivial overhead, but it enables complex analyses like our taint2 plugin.

Building LLVM

To build LLVM (if your OS does not have llvm-3.3 packages), run the following script:

cd panda
svn checkout http://llvm.org/svn/llvm-project/llvm/tags/RELEASE_33/final/ llvm
cd llvm/tools
svn checkout http://llvm.org/svn/llvm-project/cfe/tags/RELEASE_33/final/ clang
cd -
cd llvm/tools/clang/tools
svn checkouthttp://llvm.org/svn/llvm-project/clang-tools-extra/tags/RELEASE_33/final/ extra
cd -
cd llvm
./configure --enable-optimized --disable-assertions --enable-targets=x86 && \
    REQUIRES_RTTI=1 make -j $(nproc)
cd -

This will build a "Release" build of LLVM. You can use PANDA_LLVM_BUILD to have PANDA use a different build, like Debug or Debug+Asserts. You will also have to build the other build using e.g. --disable-optimized --enable-debug-runtime. You can also use PANDA_LLVM_ROOT to specify where to find your LLVM build.

With LLVM enabled and g++-4.9 or greater, you will get an error involving max_align_t for some of the plugins. You will need to patch clang to provide max_align_t. You can also use the CC and CXX env variables to use an earlier version of GCC to compile PANDA.

Execution

We use the LLVM JIT to directly execute the LLVM code. In fact, taint2 relies on this capability, as it inserts the taint operations directly into the stream of LLVM instructions. One of the quirks of the QEMU execution mopdel is that exotic instructions are implemented as C code which changes the CPUState struct. These are called helper functions. We use Clang to compile each of the helper functions directly into LLVM IR. We then link the compiled helper functions into the LLVM module containing the lifted LLVM code. When we JIT the lifted LLVM blocks, the helper functions can be called directly. Unfortunately, the LLVM infrastructure is pretty slow; expect roughly a 10x slowdown with respect to QEMU's normal TCG execution mode.

How to use it for analysis

You can access the LLVM code for a certain TranslationBlock by using the llvm_tc_ptr field in the TranslationBlock struct. This is a pointer to an llvm::Function object. We recommend using an llvm::FunctionPass to run over each TranslationBlock you would like to analyze. Initialize the FunctionPassManager like this:

extern "C" TCGLLVMContext *tcg_llvm_ctx;
panda_enable_llvm();
panda_enable_llvm_helpers();
llvm::FunctionPassManager *fpm = tcg_llvm_ctx->getFunctionPassManager();
fpm->add(new MyFunctionPass());
FPM->doInitialization();

The pass will then run after each block is translated. You want to have the pass insert callbacks into the generated code that accept the dynamic values as arguments (pointers, for example). Look at taint2 (taint2.cpp) for a (very complicated) example.

Wish List

What is missing from PANDA? What do we know how to do but just don't have time for? What do we not know how to do?

Appendix A: Callback List

before_block_translate: called before translation of each basic block

Callback ID: PANDA_CB_BEFORE_BLOCK_TRANSLATE

Arguments:

  • CPUState *env: the current CPU state
  • target_ulong pc: the guest PC we are about to translate

Return value:

unused

Signature:

int (*before_block_translate)(CPUState *env, target_ulong pc);

after_block_translate: called after the translation of each basic block

Callback ID: PANDA_CB_AFTER_BLOCK_TRANSLATE

Arguments:

  • CPUState *env: the current CPU state
  • TranslationBlock *tb: the TB we just translated

Return value:

unused

Signature:

int (*after_block_translate)(CPUState *env, TranslationBlock *tb);

before_block_exec: called before execution of every basic block

Callback ID: PANDA_CB_BEFORE_BLOCK_EXEC

Arguments:

  • CPUState *env: the current CPU state
  • TranslationBlock *tb: the TB we are about to execute

Return value:

unused

Signature:

int (*before_block_exec)(CPUState *env, TranslationBlock *tb);

before_block_exec_invalidate_opt: called before execution of every basic block, with the option to invalidate the TB

Callback ID: PANDA_CB_BEFORE_BLOCK_EXEC_INVALIDATE_OPT

Arguments:

  • CPUState *env: the current CPU state
  • TranslationBlock *tb: the TB we are about to execute

Return value:

true if we should invalidate the current translation block and retranslate, false otherwise

Signature:

bool (*before_block_exec_invalidate_opt)(CPUState *env, TranslationBlock *tb);

after_block_exec: called after execution of every basic block

Callback ID: PANDA_CB_AFTER_BLOCK_EXEC

Arguments:

  • CPUState *env: the current CPU state
  • TranslationBlock *tb: the TB we just executed

Return value:

unused

Signature::

int (*after_block_exec)(CPUState *env, TranslationBlock *tb);

insn_translate: called before the translation of each instruction

Callback ID: PANDA_CB_INSN_TRANSLATE

Arguments:

  • CPUState *env: the current CPU state
  • target_ulong pc: the guest PC we are about to translate

Return value:

true if PANDA should insert instrumentation into the generated code, false otherwise

Notes:

This allows a plugin writer to instrument only a small number of instructions, avoiding the performance hit of instrumenting everything. If you do want to instrument every single instruction, just return true. See the documentation for PANDA_CB_INSN_EXEC for more detail.

Signature:

bool (*insn_translate)(CPUState *env, target_ulong pc);

insn_exec: called before execution of any instruction identified by the PANDA_CB_INSN_TRANSLATE callback

Callback ID: PANDA_CB_INSN_EXEC

Arguments:

  • CPUState *env: the current CPU state
  • target_ulong pc: the guest PC we are about to execute

Return value:

unused

Notes:

This instrumentation is implemented by generating a call to a helper function just before the instruction itself is generated. This is fairly expensive, which is why it's only enabled via the PANDA_CB_INSN_TRANSLATE callback.

Signature:

int (*insn_exec)(CPUState *env, target_ulong pc);

virt_mem_before_read: called before memory is read

Callback ID: PANDA_CB_VIRT_MEM_BEFORE_READ

Arguments:

  • CPUState *env: the current CPU state
  • target_ulong pc: the guest PC doing the read
  • target_ulong addr: the (virtual) address being read
  • target_ulong size: the size of the read

Return value:

unused

Notes:

You must call panda_enable_memcb() to turn on memory callbacks before this callback will take effect.

Signature:

int (*virt_mem_before_read)(CPUState *env, target_ulong pc,target_ulong addr, target_ulong size);

virt_mem_before_write: called before memory is read

Callback ID: PANDA_CB_VIRT_MEM_BEFORE_WRITE

Arguments:

  • CPUState *env: the current CPU state
  • target_ulong pc: the guest PC doing the write
  • target_ulong addr: the (virtual) address being written
  • target_ulong size: the size of the write
  • void *buf: pointer to the data that is to be written

Return value:

unused

Notes:

You must call panda_enable_memcb() to turn on memory callbacks before this callback will take effect.

Signature:

int (*virt_mem_before_write)(CPUState *env, target_ulong pc, target_ulong addr, target_ulong size, void *buf);

phys_mem_before_read: called before memory is read

Callback ID: PANDA_CB_PHYS_MEM_BEFORE_READ

Arguments:

  • CPUState *env: the current CPU state
  • target_ulong pc: the guest PC doing the read
  • target_ulong addr: the (physical) address being read
  • target_ulong size: the size of the read

Return value:

unused

Notes:

You must call panda_enable_memcb() to turn on memory callbacks before this callback will take effect.

Signature:

int (*phys_mem_before_read)(CPUState *env, target_ulong pc, target_ulong addr, target_ulong size);

phys_mem_before_write: called before memory is written

Callback ID: PANDA_CB_PHYS_MEM_BEFORE_WRITE

Arguments:

  • CPUState *env: the current CPU state
  • target_ulong pc: the guest PC doing the write
  • target_ulong addr: the (physical) address being written
  • target_ulong size: the size of the write
  • void *buf: pointer to the data that is to be written

Return value:

unused

Notes:

You must call panda_enable_memcb() to turn on memory callbacks before this callback will take effect.

Signature:

int (*phys_mem_before_write)(CPUState *env, target_ulong pc, target_ulong addr, target_ulong size, void *buf);

virt_mem_after_read: called after memory is read

Callback ID: PANDA_CB_VIRT_MEM_AFTER_READ

Arguments:

  • CPUState *env: the current CPU state
  • target_ulong pc: the guest PC doing the read
  • target_ulong addr: the (virtual) address being read
  • target_ulong size: the size of the read
  • void *buf: pointer to data just read

Return value:

unused

Notes:

You must call panda_enable_memcb() to turn on memory callbacks before this callback will take effect.

Signature:

int (*virt_mem_after_read)(CPUState *env, target_ulong pc, target_ulong addr, target_ulong size, void *buf);

virt_mem_after_write: called after memory is written

Callback ID: PANDA_CB_VIRT_MEM_AFTER_WRITE

Arguments:

  • CPUState *env: the current CPU state
  • target_ulong pc: the guest PC doing the write
  • target_ulong addr: the (virtual) address being written
  • target_ulong size: the size of the write
  • void *buf: pointer to the data that was written

Return value:

unused

Notes:

You must call panda_enable_memcb() to turn on memory callbacks before this callback will take effect.

Signature:

int (*virt_mem_after_write)(CPUState *env, target_ulong pc, target_ulong addr, target_ulong size, void *buf);

phys_mem_after_read: called after memory is read

Callback ID: PANDA_CB_PHYS_MEM_AFTER_READ

Arguments:

  • CPUState *env: the current CPU state
  • target_ulong pc: the guest PC doing the write
  • target_ulong addr: the (physical) address being written
  • target_ulong size: the size of the write
  • void *buf: pointer to the data that was written

Return value:

unused

Notes:

You must call panda_enable_memcb() to turn on memory callbacks before this callback will take effect.

Signature:

int (*phys_mem_after_read)(CPUState *env, target_ulong pc, target_ulong addr, target_ulong size, void *buf);

phys_mem_after_write: called after memory is written

Callback ID: PANDA_CB_PHYS_MEM_AFTER_WRITE

Arguments:

  • CPUState *env: the current CPU state
  • target_ulong pc: the guest PC doing the write
  • target_ulong addr: the (physical) address being written
  • target_ulong size: the size of the write
  • void *buf: pointer to the data that was written

Return value:

unused

Notes:

You must call panda_enable_memcb() to turn on memory callbacks before this callback will take effect.

Signature:

int (*phys_mem_after_write)(CPUState *env, target_ulong pc, target_ulong addr, target_ulong size, void *buf);

guest_hypercall: called when a program inside the guest makes a hypercall to pass information from inside the guest to a plugin

Callback ID: PANDA_CB_GUEST_HYPERCALL

Arguments:

  • CPUState *env: the current CPU state

Return value:

unused

Notes:

On x86, this is called whenever CPUID is executed. Plugins then check for magic values in the registers to determine if it really is a guest hypercall. Parameters can be passed in other registers. We have modified translate.c to make CPUID instructions end translation blocks. This is useful, if, for example, you want to have a hypercall that turns on LLVM and enables heavyweight instrumentation at a specific point in execution.

S2E accomplishes this by using a (currently) undefined opcode. We have instead opted to use an existing instruction to make development easier (we can use inline asm rather than defining the raw bytes).

AMD's SVM and Intel's VT define hypercalls, but they are privileged instructions, meaning the guest must be in ring 0 to execute them.

For hypercalls in ARM, we use the MCR instruction (move to coprocessor from ARM register), moving to coprocessor 7. CP 7 is reserved by ARM, and isn't implemented in QEMU. The MCR instruction is present in all versions of ARM, and it is an unprivileged instruction in this scenario. Plugins can also check for magic values in registers on ARM.

Signature:

int (*guest_hypercall)(CPUState *env);

monitor: called when someone uses the plugin_cmd monitor command

Callback ID: PANDA_CB_MONITOR

Arguments:

  • Monitor *mon: a pointer to the Monitor
  • const char *cmd: the command string passed to plugin_cmd

Return value:

unused

Notes:

The command is passed as a single string. No parsing is performed on the string before it is passed to the plugin, so each plugin must parse the string as it deems appropriate (e.g. by using strtok and getopt) to do more complex option processing.

It is recommended that each plugin implementing this callback respond to the "help" message by listing the commands supported by the plugin.

Note that every loaded plugin will have the opportunity to respond to each plugin_cmd; thus it is a good idea to ensure that your plugin's monitor commands are uniquely named, e.g. by using the plugin name as a prefix (sample_do_foo rather than do_foo).

Signature:

int (*monitor)(Monitor *mon, const char *cmd);

cb_cpu_restore_state: Called inside of cpu_restore_state(), when there is a CPU fault/exception

Callback ID: PANDA_CB_CPU_RESTORE_STATE

Arguments:

  • CPUState *env: the current CPU state
  • TranslationBlock *tb: the current translation block

Return value: unused

Signature:

int (*cb_cpu_restore_state)(CPUState *env, TranslationBlock *tb);

before_loadvm: called at the start of replay, just before the snapshot state is loaded

Callback ID: PANDA_CB_BEFORE_REPLAY_LOADVM

Arguments:

None.

Return value:

unused

Notes:

This allows us to hook devices' loadvm handlers (remember to unregister the existing handler for the device first)

An example of how to use this callback can be found in the sample plugin.

Signature

int (*before_loadvm)(void);

user_before_syscall: Called before a syscall for QEMU user mode.

Callback ID: PANDA_CB_USER_BEFORE_SYSCALL

Arguments:

  • void *cpu_env: pointer to CPUState
  • bitmask_transtbl *fcntl_flags_tbl: syscall flags table from syscall.c
  • int num: syscall number
  • abi_long arg1..arg8: syscall arguments

Return value: unused

Notes: Some system call arguments need some additional processing, as evident in linux-user/syscall.c. If your plugin is particularly interested in system call arguments, be sure to process them in similar ways.

Additionally, this callback is dependent on running qemu in linux-user mode, a mode for which PANDA support is being phased out. To use this callback you will need to wrap the code in #ifdefs. See the 'taint' or 'llvm_trace' PANDA plugins for examples of legacy usage. This callback will likely be removed in future versions of PANDA.

Signature:

int (*user_before_syscall)(void *cpu_env, bitmask_transtbl *fcntl_flags_tbl,
                            int num, abi_long arg1, abi_long arg2, abi_long
                            arg3, abi_long arg4, abi_long arg5,
                            abi_long arg6, abi_long arg7, abi_long arg8);

user_after_syscall: Called after a syscall for QEMU user mode

Callback ID: PANDA_CB_USER_AFTER_SYSCALL

Arguments:

  • void *cpu_env: pointer to CPUState
  • bitmask_transtbl *fcntl_flags_tbl: syscall flags table from syscall.c
  • int num: syscall number
  • abi_long arg1..arg8: syscall arguments
  • void *p: void pointer used for processing of some arguments
  • abi_long ret: return value of syscall

Return value: unused

Notes:

Some system call arguments need some additional processing, as evident in linux-user/syscall.c. If your plugin is particularly interested in system call arguments, be sure to process them in similar ways.

Additionally, this callback is dependent on running qemu in linux-user mode, a mode for which PANDA support is being phased out. To use this callback you will need to wrap the code in #ifdefs. See the 'taint' or 'llvm_trace' PANDA plugins for examples of legacy usage. This callback will likely be removed in future versions of PANDA.

Signature:

int (*user_after_syscall)(void *cpu_env, bitmask_transtbl *fcntl_flags_tbl,
                            int num, abi_long arg1, abi_long arg2, abi_long
                            arg3, abi_long arg4, abi_long arg5, abi_long arg6,
                            abi_long arg7, abi_long arg8, void *p,
                            abi_long ret);

after_PGD_write: called when the CPU changes to a different address space

Callback ID: PANDA_CB_VMI_PGD_CHANGED

Arguments:

  • CPUState* env: pointer to CPUState
  • target_ulong oldval: old PGD (address space identifier) value
  • target_ulong newval: new PGD (address space identifier) value

Return value:

unused

Signature:

    int (*after_PGD_write)(CPUState *env, target_ulong oldval, target_ulong newval);

replay_hd_transfer: Called during a replay of a hard drive transfer action

Callback ID: PANDA_CB_REPLAY_HD_TRANSFER

Arguments:

  • CPUState* env: pointer to CPUState
  • uint32_t type: type of transfer (Hd_transfer_type)
  • uint64_t src_addr: address for src
  • uint64_t dest_addr: address for dest
  • uint32_t num_bytes: size of transfer in bytes

Return value: unused

Notes:

In replay only, some kind of data transfer involving hard drive. NB: We are neither before nor after, really. In replay the transfer doesn't really happen. We are at the point at which it happened, really. Even though the transfer doesn't happen in replay, useful instrumentations (such as taint analysis) can still be applied accurately.

The allowed values for type are:

  • HD_TRANSFER_HD_TO_IOB
  • HD_TRANSFER_IOB_TO_HD
  • HD_TRANSFER_PORT_TO_IOB
  • HD_TRANSFER_IOB_TO_PORT
  • HD_TRANSFER_HD_TO_RAM
  • HD_TRANSFER_RAM_TO_HD

Signature:

int (*replay_hd_transfer)(CPUState *env, uint32_t type, uint64_t src_addr,
                            uint64_t dest_addr, uint32_t num_bytes);

replay_net_transfer: Called during a replay of a network transfer action

Callback ID: PANDA_CB_REPLAY_NET_TRANSFER

Arguments:

  • CPUState* env: pointer to CPUState
  • uint32_t type: type of transfer (Net_transfer_type)
  • uint64_t src_addr: address for src
  • uint64_t dest_addr: address for dest
  • uint32_t num_bytes: size of transfer in bytes

Return value: unused

Notes:

In replay only, some kind of data transfer within the network card (currently, only the E1000 is supported). NB: We are neither before nor after, really. In replay the transfer doesn't really happen. We are at the point at which it happened, really.

Signature:

int (*replay_net_transfer)(CPUState *env, uint32_t type, uint64_t src_addr,
                            uint64_t dest_addr, uint32_t num_bytes);

replay_before_cpu_physical_mem_rw_ram: In replay only, we are about to dma from some qemu buffer to guest memory

Callback ID: PANDA_CB_REPLAY_BEFORE_CPU_PHYSICAL_MEM_RW_RAM

Arguments:

  • CPUState* env: pointer to CPUState
  • uint32_t is_write: type of transfer going on (is_write == 1 means IO -> RAM else RAM -> IO)
  • uint64_t src_addr: src of dma
  • uint64_t dest_addr: dest of dma
  • uint32_t num_bytes: size of transfer

Return value: unused

Notes: In the current version of QEMU, this appears to be a less commonly used method of performing DMA with the hard drive device. For the hard drive, the most common DMA mechanism can be seen in the PANDA_CB_REPLAY_HD_TRANSFER_TYPE under type HD_TRANSFER_HD_TO_RAM (and vice versa). Other devices still appear to use cpu_physical_memory_rw() though.

Signature:

int (*replay_before_cpu_physical_mem_rw_ram)(
        CPUState *env, uint32_t is_write, uint64_t src_addr, uint64_t dest_addr,
        uint32_t num_bytes);

replay_after_cpu_physical_mem_rw_ram: In replay only, we have just done a DMA from some QEMU buffer to guest memory

Callback ID: PANDA_CB_REPLAY_AFTER_CPU_PHYSICAL_MEM_RW_RAM

Arguments:

  • CPUState* env: pointer to CPUState
  • uint32_t is_write: type of transfer going on (is_write == 1 means IO -> RAM else RAM -> IO)
  • uint64_t src_addr: src of DMA
  • uint64_t dest_addr: dest of DMA
  • uint32_t num_bytes: size of transfer

Return value: unused

Notes:

In the current version of QEMU, this appears to be a less commonly used method of performing DMA with the hard drive device. For the hard drive, the most common DMA mechanism can be seen in the PANDA_CB_REPLAY_HD_TRANSFER_TYPE under type HD_TRANSFER_HD_TO_RAM (and vice versa). Other devices still appear to use cpu_physical_memory_rw() though.

Signature:

int (*replay_after_cpu_physical_mem_rw_ram)(
        CPUState *env, uint32_t is_write, uint8_t* src_addr, uint64_t dest_addr,
        uint32_t num_bytes);

replay_handle_packet: used for network packet replay

Callback ID: PANDA_CB_REPLAY_HANDLE_PACKET

Arguments:

  • CPUState *env: pointer to CPUState
  • uint8_t *buf: buffer containing packet data
  • int size: num bytes in buffer
  • uint8_t direction: PANDA_NET_RX for receive, PANDA_NET_TX for transmit
  • uint64_t old_buf_addr: the address that buf had when the recording was taken

Return value:

unused

Signature:

int (*replay_handle_packet)(CPUState *env, uint8_t *buf, int size,
                            uint8_t direction, uint64_t old_buf_addr);