Skip to content

Commit

Permalink
Merge pull request #1 from virtual-labs/dev
Browse files Browse the repository at this point in the history
Dev
  • Loading branch information
vaibhavkurhe27 committed Apr 29, 2022
2 parents 342963b + 23a2864 commit d1b525e
Show file tree
Hide file tree
Showing 115 changed files with 21,661 additions and 58 deletions.
7 changes: 6 additions & 1 deletion experiment/aim.md
Original file line number Diff line number Diff line change
@@ -1 +1,6 @@
### Aim of the experiment
### To acquaint the user to significance of laser welding and its importance in context with typical applications

### Objective
1. To study the laser welding process
2. To understand the effect of variation of Beam power/density, leading towards variation in case depth, weld strength
3. To understand significance of laser welding in comparison with other welding techniques
2 changes: 1 addition & 1 deletion experiment/experiment-name.md
Original file line number Diff line number Diff line change
@@ -1 +1 @@
## Experiment name
## Laser spot welding using NdYAG laser system
Binary file added experiment/images/img1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added experiment/images/img2.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added experiment/images/img3.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added experiment/images/img4.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added experiment/images/img5.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added experiment/images/pimg1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added experiment/images/pimg2.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added experiment/images/pimg3.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added experiment/images/pimg4.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added experiment/images/pimg5.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added experiment/images/pimg6.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added experiment/images/pimg7.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added experiment/images/pimg8.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added experiment/images/pimg9.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
68 changes: 47 additions & 21 deletions experiment/posttest.json
Original file line number Diff line number Diff line change
Expand Up @@ -2,38 +2,64 @@
"version": 2.0,
"questions": [
{
"question": "This is a Sample Question 1?",
"question": "Performance of Laser spot welding process is affected by",
"answers": {
"a": "answer1",
"b": "answer2",
"c": "answer3",
"d": "answer4"
"a": "Welding speed",
"b": "Focal length of the beam and focusing lens",
"c": "Work piece position",
"d": "All of the above"
},
"explanations": {
"a": "Explanation 1 <a href='www.google.com'>here</a>",
"b": "Explanation 2",
"c": "Explanation 2",
"d": "Explanation 2"

"correctAnswer": "d",
"difficulty": "beginner"
},
{
"question": "Which of the following conditions need to be satisfied in laser spot-welding?",
"answers": {
"a": "Highly accurate positioning of the components",
"b": "Accurate positioning of the components",
"c": "in the focus of the laser to prevent large variations in the irradiance",
"d": "All of the above"
},
"correctAnswer": "a",

"correctAnswer": "d",
"difficulty": "beginner"
},
{
"question": "This is a Sample Question 2?",
"question": "Which welding technique includes spot welding modes: conduction and penetration?",
"answers": {
"a": "answer1",
"b": "answer2",
"c": "answer3",
"d": "answer4"
"a": "Resistance Welding",
"b": "Laser Welding",
"c": "MIG welding",
"d": "TIG Welding"
},
"explanations": {
"a": "Explanation 1 <a href='www.google.com'>here</a>",
"b": "Explanation 2",
"c": "Explanation 2",
"d": "Explanation 2"

"correctAnswer": "b",
"difficulty": "beginner"
},
{
"question": "Laser cannot effectively machine",
"answers": {
"a": "Refractory materials.",
"b": "WC (Tungsten carbides).",
"c": "Copper and Aluminium",
"d": "Steels"
},

"correctAnswer": "c",
"difficulty": "beginner"
},
{
"question": "Can we consider Lazeranko’s thermal model for laser beam or electron beam heating?",
"answers": {
"a": "Yes",
"b": "No",
"c": "Either of them",
"d": "Yes with Modifications"
},

"correctAnswer": "a",
"difficulty": "beginner"
}
]
}
68 changes: 47 additions & 21 deletions experiment/pretest.json
Original file line number Diff line number Diff line change
Expand Up @@ -2,37 +2,63 @@
"version": 2.0,
"questions": [
{
"question": "This is a Sample Question 1?",
"question": "Laser is a ----- manufacturing process",
"answers": {
"a": "answer1",
"b": "answer2",
"c": "answer3",
"d": "answer4"
"a": "Selective",
"b": "Chip less",
"c": "flexible",
"d": "Ideal"
},
"explanations": {
"a": "Explanation 1 <a href='www.google.com'>here</a>",
"b": "Explanation 2",
"c": "Explanation 2",
"d": "Explanation 2"

"correctAnswer": "c",
"difficulty": "beginner"
},
{
"question": "Laser radiation by itself is a",
"answers": {
"a": "Thermal process",
"b": "Non thermal",
"c": "Ultrasonic",
"d": "Monochromatic light"
},

"correctAnswer": "d",
"difficulty": "beginner"
},
{
"question": "Laser material processing of materials is a",
"answers": {
"a": "Thermal",
"b": "Non thermal",
"c": "Ultrasonic",
"d": "ablation"
},

"correctAnswer": "a",
"difficulty": "beginner"
},
{
"question": "This is a Sample Question 2?",
"question": "Laser material processing is associated with",
"answers": {
"a": "answer1",
"b": "answer2",
"c": "answer3",
"d": "answer4"
"a": "Absorption of total energy",
"b": "Adsorption",
"c": "Transmission",
"d": "Reflection"
},
"explanations": {
"a": "Explanation 1 <a href='www.google.com'>here</a>",
"b": "Explanation 2",
"c": "Explanation 2",
"d": "Explanation 2"

"correctAnswer": "b",
"difficulty": "beginner"
},
{
"question": "Efficiency of Laser systems for machining is generally",
"answers": {
"a": "0.5% to 1%",
"b": "3% to 5%",
"c": "10% to 20%",
"d": "30% to 50%"
},
"correctAnswer": "c",

"correctAnswer": "a",
"difficulty": "beginner"
}
]
Expand Down
83 changes: 82 additions & 1 deletion experiment/procedure.md
Original file line number Diff line number Diff line change
@@ -1 +1,82 @@
### Procedure
### Experimental setup

The schematic diagram of laser system along with 3-axis gantry used during experimentation is as shown in the Fig 1.2 is the actual photograph of the system.

<center><img src="images/pimg1.png" title="" /></center>

The specifications of the laser head and 3-axis gantry attached with the system are as below.

* Laser head specifications
* Laser type - Pulsed Nd: YAG
* Wavelength - 1.06&mu;m
* Maximum average output power - 200 watts
* Pulse repetition rate - 1&#126;200Hz
* Maximum power per pulse @20msec pulse width - 80Joules
* Pulse width - 100&mu;sec to 20msec
* Beam divergence – 20mrad
* Maximum Beam diameter - 8mm
* Beam expander - 2X to 8X with input aperture of maximum 20mm
* Power supply - 3 phase 440 V AC mains input power supply with 32 Amp of current
* Pulse shaping - increasing and decreasing steps for welding
* 3 - axis gantry specifications
* Multi - Axis CNC motion systems
* Model: SLP - CNC1824SS
* Table Area: - X = 200, Y = 200, Z = 50 & with &theta; (Rotary axis)
* All axes precision pre loaded ball screws.
* Resolution: - 2 microns
* Motors: Micro stepping motors 2 phase.
* Micro stepping motor with gearbox, on all axeshe schematic

### Procedure
**1.0 Material for experimentation**

The stainless steel plates of 0.3mm thickness are used for the experimentation. The chemical analysis was carried out and, the composition obtained is as given in, Table 1.1 below.

<center><img src="images/pimg2.png" title="" /></center>

The micro-structure of the parent material is as shown below in Figure 1.1.

<center><img src="images/pimg3.png" title="" /></center>

**1.1 Preparation of test specimens**

The material used for experimentation is stainless steel plate of thickness 0.3mm, as shown in Figure 1.2. The test specimens prepared are of size 150 X 30mm.

<center><img src="images/pimg4.png" title="" /></center>

The samples are produced from 0.3mm thick stainless steel using the press machine by shearing; to overcome the problems regarding edge quality. The reason is to avoid the inconvenience of holding the sample in fixture before welding and during the shear tension test on an electronic tensometer.
The samples are cleaned using acetone; an effective means for sample preparation for materials sensitive to residue and moisture. The lap joint is prepared with 30mm overlapping and holding in a fixture, which minimizes the air gap at the overlap. The fixture maintains the relative position of the weldments samples while providing beam access to the sample. The fixture should be adequately robust, and distortion should be avoided. The Figure 1.3 below shows a photograph of the sample mounted in fixture.

<center><img src="images/pimg5.png" title="" /></center>

**1.2 Post- experimental specimen preparation**

After the laser spot welding, the sample is grounded by using different grades of emery papers (200, 400, 600, and 800). Then specimens are polished by using different grades of polishing papers (1/0, 2/0, 3/0, 4/0, and 5/0) followed by lapping and polishing machine. After polishing the surface is thoroughly washed with soap solution and dried with a hot drier.
For the purpose of metallographic analysis, the treated specimens were transversely cut on CNC Wire EDM. The samples are cold mounted and lapping process is completed. Subsequently the surface is etched, to observe the microstructure on Image Analyzer with microscope (shown in Figure 1.5), the recommended enchant Vilella’s reagent (5cc HCL +100cc Ethanol + 1 gm picric acid) solution is used. This made the specimens ready for the study of microstructure as shown in Figure 1.4.

<center><img src="images/pimg6.png" title="" /></center>

<center><img src="images/pimg7.png" title="" /></center>

**1.3 Metallographic analysis**

The microstructure of the laser treated specimen is as shown in Figure 1.6. The case depth and width of the spot are measured by using image analyzer with microscope.

<center><img src="images/pimg8.png" title="" /></center>

It is assumed that the maximum depth and width of the spot are available at centre of the spot. Therefore, to ensure the same successive polishing of the specimen is carried out to remove the minimum possible material.

**1.4 Weld strength tests**

Sample used for Weld strength (tensile strength) test had the shape and dimensions as shown in Figure 1.7 above, the tensile strength is referred as weld strength in the next all chapters. The tensile strength test was carried out by using Electronic Tensometer Tester with a test speed of 0.2mm/min, experiment run, with a higher limit 2000N and minimum 20N.

<center><img src="images/pimg9.png" title="" /></center>

**1.4 Experimentation**
Number of spots are considered with different power (interaction time) and beam spot size to identify the appropriate range.

**1.4.1 Spots of different beam power at constant beam spot size**
The various spots are taken on samples for constant beam spot size 0.85mm within the power range of 486 to 642 Watts.

**1.4.2 Spots of different beam diameter at constant beam power**
The various spot welded samples are taken for constant beam power 607W for beam spot size ranging from 0.68 to 0.96mm.
18 changes: 17 additions & 1 deletion experiment/references.md
Original file line number Diff line number Diff line change
@@ -1 +1,17 @@
### Link your references in here
### Reference
1. Crafer R. C. and Oakley P. J., (1993) "Laser Processing In Manufacturing", 1st edition, Chapman and Hall, pp. 145-146.
2. Ion John C., (2005) "Laser processing of engineering materials –Principles, procedure and industrial applications", Elsevier, pp. 181-184, 190, 339-346, 396-399, 446.
3. Ready John F. and Farson Dave F., (2001) "LIA Handbook of Laser Materials Processing", Laser Institute of America Magnolia Publishing, pp. 37-38, 190, 321, 329-330, 343, 359.
4. Steen W. M., (1991) "Laser material processing", Springer - Verlag Landon ISBN, pp. 113-116.

**Further Readings:**

1. Benyounis K. Y., Olabi A. G. and Hashmi M. S. J., (2005) "Effect of laser welding parameters on the heat input and weld-bead profile", Journal of materials processing technology, 164-165 pp. 978-985.
2. Castro R. and Cadenet J. J. de., (1974) "Welding metallurgy of stainless and heat-resisting steels", Cambridge university press, London, pp. 45-157.
3. Dawes Christopher, (1994) "Laser Welding, A practical guide", Jaico publishing house, Bombay, pp. 79-161.
4. Johan Meijer, (2004) "Laser beam machining (LBM), state of the art and new opportunities", Journal of Material Processing Technology, 149, pp. 2- 17.
5. Migliore Leonard, (1996) "Laser materials processing" Marcel Dekker, Inc., New York, pp. 1-81, 165-208.
6. Mishra P. K., (1997) "Nonconventional Machining", Narosa Publishing House, pp. 81-85, 147-159.
7. Neugebauer R., (2003) "IWI Fraunhofer Institut 2003 Year Report", Chemnitz, Germany.
8. Ribolla A., Damoulis G. L. and Batalha G. F., (2005) "The use of Nd: YAG laser weld for large scale volume assembly of automotive body in white", Journal of materials processing technology, 164-165, pp. 1120-1127.
9. Zipperian Donald C., "Metallographic specimen preparation basics"
Loading

0 comments on commit d1b525e

Please sign in to comment.