Skip to content
master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 

YouTube-Objects v2.3

Vicky Kalogeiton, Vittorio Ferrari, and Cordelia Schmid

Description

The dataset is composed of videos collected from YouTube for 10 moving object classes of the PASCAL VOC Challenge. This release provides the annotations in PASCAL VOC 2007 format for the same 7,000 bounding-box annotations from the YTO v2.2.

In the training set, we annotated one instance per frame, while in the test set we annotated all instances of the desired object class.

Explore

You can explore the annotated frames with the Dataset viewer.

Download

  1. Download and extract the directory called YTOdevkit

    curl http://calvin-vision.net/bigstuff/YTOv2.3/YTOdevkit.tar.gz | tar xz
    
  2. Go to the YTOdevkit directory

    cd YTOdevkit
    
  3. Download and extract the VOCdevkit Code

    curl http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCdevkit_08-Jun-2007.tar | tar x --strip-components 1 VOCdevkit/VOCcode
    
  4. Download and extract the YouTube-Objects v2.3 image sets, annotations and jpg images

    curl http://calvin-vision.net/bigstuff/YTOv2.3/YTOImageSets.tar.gz | tar xz -C YTO/
    curl http://calvin-vision.net/bigstuff/YTOv2.3/YTOAnnotations.tar.gz | tar xz -C YTO/
    curl http://calvin-vision.net/bigstuff/YTOv2.3/YTOJPEGImages.tar.gz | tar xz -C YTO/
    

It should have this basic structure

YTOdevkit/             # development kit
├── results/           # YTO results
├── VOCcode/           # VOC utility code
├── YTO/               # image sets, annotations, etc.
│   ├── Annotations/
│   ├── ImageSets/
│   └── JPEGImages/
└── ...

References

If you find YouTube-Objects v2.3 useful in your research, please consider citing:

@article{kalogeiton16pami,
  title={Analysing domain shift factors between videos and images for object detection},
  author={Kalogeiton, Vicky and Ferrari, Vittorio and Schmid, Cordelia},
  journal={IEEE transactions on pattern analysis and machine intelligence},
  volume={38},
  number={11},
  pages={2327--2334},
  year={2016},
  publisher={IEEE}
}

About

YTO dataset annotations in PASCAL VOC format

Resources

License

Releases

No releases published

Packages

No packages published