Skip to content

Commit

Permalink
rewritting with a new definition of restricted identities
Browse files Browse the repository at this point in the history
  • Loading branch information
vporton committed Nov 28, 2018
1 parent 8295cb4 commit c6dad77
Showing 1 changed file with 6 additions and 4 deletions.
10 changes: 6 additions & 4 deletions chap-unfixed.tex
Original file line number Diff line number Diff line change
Expand Up @@ -133,8 +133,8 @@ \section{Image and domain}
~
\begin{enumerate}
\item $\operatorname{IM} f = \setcond{Y \in \mathfrak{Z}}{\mathcal{E}_{\mathcal{C}}^{Y, \Dst f} \circ \mathcal{E}_{\mathcal{C}}^{\Dst f,
Y} \circ f = f} = \setcond{Y \in \mathfrak{Z}}{\id^{\mathcal{C}(\Dst f,\Dst f)}_{Y\sqcap\Dst f} \circ f = f}$;
\item $\operatorname{DOM} f = \setcond{X \in \mathfrak{Z}}{f\circ\mathcal{E}_{\mathcal{C}}^{\Src f, X} \circ \mathcal{E}_{\mathcal{C}}^{X, \Src f} = f} = \setcond{X \in \mathfrak{Z}}{f \circ \id^{\mathcal{C}(\Src f,\Src f)}_{X\sqcap\Src f} = f}$.
Y} \circ f = f} = \setcond{Y \in \mathfrak{Z}}{\id^{\mathcal{C}(\Dst f,\Dst f)}_{[Y]\sqcap[\Dst f]} \circ f = f}$;
\item $\operatorname{DOM} f = \setcond{X \in \mathfrak{Z}}{f\circ\mathcal{E}_{\mathcal{C}}^{\Src f, X} \circ \mathcal{E}_{\mathcal{C}}^{X, \Src f} = f} = \setcond{X \in \mathfrak{Z}}{f \circ \id^{\mathcal{C}(\Src f,\Src f)}_{[X]\sqcap[\Src f]} = f}$.
\end{enumerate}
\end{defn}

Expand All @@ -156,11 +156,13 @@ \section{Image and domain}
\end{enumerate}
\end{prop}

\fxwarning{Not yet rewritten with new definition below this.}

\begin{proof}
$\operatorname{IM} f =
\setcond{Y \in \mathfrak{Z}}{\id^{\mathcal{C}(\Dst f,\Dst f)}_{Y\sqcap\Dst f} \circ f = f}$.
\setcond{Y \in \mathfrak{Z}}{\id^{\mathcal{C}(\Dst f,\Dst f)}_{[Y]\sqcap[\Dst f]} \circ f = f}$.

Suppose $Y\in\operatorname{IM}f$. Then take $Y'=Y\sqcap\Dst f$. We have $Y\sqsupseteq Y'$ and $Y'\in\operatorname{Im}f$. So $Y\in\mathscr{S}\operatorname{Im}f$. If $Y\in\mathscr{S}\operatorname{Im}f$ then $Y\in\operatorname{IM}f$ obviously.
Suppose $Y\in\operatorname{IM}f$. Then take $Y'=[Y]\sqcap[\Dst f]$. We have $Y\sqsupseteq Y'$ and $Y'\in\operatorname{Im}f$. So $Y\in\mathscr{S}\operatorname{Im}f$. If $Y\in\mathscr{S}\operatorname{Im}f$ then $Y\in\operatorname{IM}f$ obviously.
So $\operatorname{IM} f = \mathscr{S}\operatorname{Im} f$.

$\rsupfun{\Dst f\cap}\operatorname{IM}f\subseteq
Expand Down

0 comments on commit c6dad77

Please sign in to comment.