Skip to content

words/similarity

master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

similarity

Build Coverage Downloads Size

How similar are these two strings?

Install

npm:

npm install similarity

Use

var similarity = require('similarity')

similarity('food', 'food') // 1
similarity('food', 'fool') // 0.75
similarity('ding', 'plow') // 0
similarity('chicken', 'chick') // 0.714285714
similarity('ES6-Shim', 'es6 shim') // 0.875 (case insensitive)
similarity('ES6-Shim', 'es6 shim', {sensitive: true}) // 0.5 (case sensitive)

API

similarity(left, right[, options])

Get the similarity (number) between two values (strings), where 0 is dissimilar, and 1 is equal.

  • options.sensitive (boolean, default: false) — Turn on (true) to treat casing differences as differences

CLI

Usage: similarity [options] <word> <word>

How similar are these two strings?

Options:

  -h, --help           output usage information
  -v, --version        output version number
  -s, --sensitive      be sensitive to casing differences

Usage:

# output similarity
$ similarity sitting kitten
0.5714285714285714
$ similarity saturday sunday
0.625

See also

Note: This module uses Levenshtein distance to measure similarity, but there are many other algorithms for string comparison. Here are a few:

  • clj-fuzzy — Handy collection of algorithms dealing with fuzzy strings and phonetics
  • natural — General natural language facilities for node
  • string-similarity — Finds degree of similarity between two strings, based on Dice’s coefficient
  • dice-coefficient — Sørensen–Dice coefficient
  • jaro-winkler — The Jaro-Winkler distance metric

License

ISC © Zeke Sikelianos