Skip to content
master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 

VMT

Code for Virtual Mixup Training for Unsupervised Domain Adaptation.

Acknowledgments

This code is based on dirt-t.

Dependencies

numpy==1.14.1
scikit_image==0.13.1
scipy==1.0.0
tensorflow_gpu==1.6.0
tensorbayes==0.4.0

Train

  1. Run VMT
python -u run_dirtt.py --datadir data --src mnist --trg svhn --inorm 1 --run 0 --dirt 0 --dw 0.01 --svw 1 --tvw 0.06 --tcw 0.06 --smw 1 --tmw 0.06
  1. Run DIRT-T
python -u run_dirtt.py --datadir data --src mnist --trg svhn --inorm 1 --run 0 --dirt 5000 --dw 0.01 --svw 1 --tvw 0.06 --tcw 0.06 --smw 1 --tmw 0.06

Citation

If you use this work in your research, please cite:

@article{arxiv1905.04215,
  author = {Xudong Mao and Yun Ma and Zhenguo Yang and Yangbin Chen and Qing Li},
  title = {Virtual Mixup Training for Unsupervised Domain Adaptation},
  journal = {arXiv preprint arXiv:1905.04215},
  year = {2019}
}

About

No description, website, or topics provided.

Resources

License

Releases

No releases published

Packages

No packages published

Languages