Skip to content

Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

License

Notifications You must be signed in to change notification settings

xufabing/face_classification

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Face classification and detection from the B-IT-BOTS robotics team.

Real-time face detection and emotion/gender classification using fer2013/IMDB datasets with a keras CNN model and openCV.

  • IMDB gender classification test accuracy: 96%.
  • fer2013 emotion classification test accuracy: 66%.

For more information please consult the publication

Emotion/gender examples: alt tag

Guided back-prop alt tag

Real-time demo:

B-IT-BOTS robotics team :) alt tag

Instructions

To train previous/new models for emotion classification:

  • Download the fer2013.tar.gz file from here

  • Move the downloaded file to the datasets directory inside this repository.

  • Untar the file:

tar -xzf fer2013.tar

  • Run the train_emotion_classification.py file

python3 train_emotion_classifier.py

To train previous/new models for gender classification:

  • Download the imdb_crop.tar file from here (It's the 7GB button with the tittle Download faces only).

  • Move the downloaded file to the datasets directory inside this repository.

  • Untar the file:

tar -xfv imdb_crop.tar

  • Run the train_gender_classification.py file

python3 train_gender_classifier.py

Run real-time emotion demo:

python3 video_emotion_color_demo.py

Run real-time guided back-prop demo:

python3 image_gradcam_demo.py

Make inference on single images:

python3 image_emotion_gender_demo.py <image_path>

e.g.

python3 image_emotion_gender_demo.py ../images/test_image.jpg

About

Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%