Skip to content

yangyucheng000/ascend_faster_rcnn

Repository files navigation

Contents

FasterRcnn Description

Before FasterRcnn, the target detection networks rely on the region proposal algorithm to assume the location of targets, such as SPPnet and Fast R-CNN. Progress has reduced the running time of these detection networks, but it also reveals that the calculation of the region proposal is a bottleneck.

FasterRcnn proposed that convolution feature maps based on region detectors (such as Fast R-CNN) can also be used to generate region proposals. At the top of these convolution features, a Region Proposal Network (RPN) is constructed by adding some additional convolution layers (which share the convolution characteristics of the entire image with the detection network, thus making it possible to make regions almost costlessProposal), outputting both region bounds and objectness score for each location.Therefore, RPN is a full convolutional network (FCN), which can be trained end-to-end, generate high-quality region proposals, and then fed into Fast R-CNN for detection.

Paper: Ren S , He K , Girshick R , et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(6).

Model Architecture

FasterRcnn is a two-stage target detection network,This network uses a region proposal network (RPN), which can share the convolution features of the whole image with the detection network, so that the calculation of region proposal is almost cost free. The whole network further combines RPN and FastRcnn into a network by sharing the convolution features.

Dataset

Note that you can run the scripts based on the dataset mentioned in original paper or widely used in relevant domain/network architecture. In the following sections, we will introduce how to run the scripts using the related dataset below.

Dataset used: COCO2017

  • Dataset size:19G
    • Train:18G,118000 images
    • Val:1G,5000 images
    • Annotations:241M,instances,captions,person_keypoints etc
  • Data format:image and json files
    • Note:Data will be processed in dataset.py

Environment Requirements

  • Hardware(Ascend/GPU)

    • Prepare hardware environment with Ascend processor.
  • Docker base image

  • Install MindSpore.

  • Download the dataset COCO2017.

  • We use COCO2017 as training dataset in this example by default, and you can also use your own datasets.

    1. If coco dataset is used. Select dataset to coco when run script. Install Cython and pycocotool, and you can also install mmcv to process data.

      pip install Cython
      
      pip install pycocotools
      
      pip install mmcv==0.2.14
      

      And change the COCO_ROOT and other settings you need in default_config.yaml、default_config_101.yaml or default_config_152.yaml. The directory structure is as follows:

      .
      └─cocodataset
        ├─annotations
          ├─instance_train2017.json
          └─instance_val2017.json
        ├─val2017
        └─train2017
      
      
    2. If your own dataset is used. Select dataset to other when run script. Organize the dataset information into a TXT file, each row in the file is as follows:

      train2017/0000001.jpg 0,259,401,459,7 35,28,324,201,2 0,30,59,80,2
      

      Each row is an image annotation which split by space, the first column is a relative path of image, the others are box and class information of the format [xmin,ymin,xmax,ymax,class]. We read image from an image path joined by the IMAGE_DIR(dataset directory) and the relative path in ANNO_PATH(the TXT file path), IMAGE_DIR and ANNO_PATH are setting in default_config_50.yaml、default_config_101.yaml or default_config_152.yaml.

Quick Start

After installing MindSpore via the official website, you can start training and evaluation as follows:

Note:

  1. the first run will generate the mindeocrd file, which will take a long time.
  2. pretrained model is a resnet50 checkpoint that trained over ImageNet2012.you can train it with resnet50 scripts in modelzoo, and use src/convert_checkpoint.py to get the pretrain model.
  3. BACKBONE_MODEL is a checkpoint file trained with resnet50 scripts in modelzoo.PRETRAINED_MODEL is a checkpoint file after convert.VALIDATION_JSON_FILE is label file. CHECKPOINT_PATH is a checkpoint file after trained.

Run on Ascend

# convert checkpoint
python -m src.convert_checkpoint --ckpt_file=[BACKBONE_MODEL]

# standalone training
bash run_standalone_train_ascend.sh [PRETRAINED_MODEL] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](optional)

# distributed training
bash run_distribute_train_ascend.sh [RANK_TABLE_FILE] [PRETRAINED_MODEL] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](optional)

# eval
bash run_eval_ascend.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](optional)

# inference (the values of IMAGE_WIDTH and IMAGE_HEIGHT must be set or use default at the same time.)
bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [ANN_FILE_PATH] [IMAGE_WIDTH](optional) [IMAGE_HEIGHT](optional) [DEVICE_ID](optional)

Run in docker

  1. Build docker images
# build docker
docker build -t fasterrcnn:20.1.0 . --build-arg FROM_IMAGE_NAME=ascend-mindspore-arm:20.1.0
  1. Create a container layer over the created image and start it
# start docker
bash scripts/docker_start.sh fasterrcnn:20.1.0 [DATA_DIR] [MODEL_DIR]
  1. Train
# standalone training
bash run_standalone_train_ascend.sh [PRETRAINED_MODEL] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](optional)

# distributed training
bash run_distribute_train_ascend.sh [RANK_TABLE_FILE] [PRETRAINED_MODEL] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](optional)
  1. Eval
# eval
bash run_eval_ascend.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](optional)
  1. Inference
# inference
bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [ANN_FILE] [IMAGE_WIDTH](optional) [IMAGE_HEIGHT](optional) [DEVICE_ID](optional)
  • Running on ModelArts

    # Train 8p with Ascend
    # (1) Perform a or b.
    #       a. Set "enable_modelarts=True" on default_config.yaml file.
    #          Set "distribute=True" on default_config.yaml file.
    #          Set "data_path='/cache/data'" on default_config.yaml file.
    #          Set "epoch_size: 20" on default_config.yaml file.
    #          (optional)Set "checkpoint_url='s3://dir_to_your_pretrained/'" on default_config.yaml file.
    #          Set other parameters on default_config.yaml file you need.
    #       b. Add "enable_modelarts=True" on the website UI interface.
    #          Add "distribute=True" on the website UI interface.
    #          Add "data_path=/cache/data" on the website UI interface.
    #          Add "epoch_size: 20" on the website UI interface.
    #          (optional)Add "checkpoint_url='s3://dir_to_your_pretrained/'" on the website UI interface.
    #          Add other parameters on the website UI interface.
    # (2) Prepare model code
    # (3) Upload or copy your pretrained model to S3 bucket if you want to finetune.
    # (4) Perform a or b. (suggested option a)
    #       a. First, zip MindRecord dataset to one zip file.
    #          Second, upload your zip dataset to S3 bucket.(you could also upload the origin mindrecord dataset, but it can be so slow.)
    #       b. Upload the original dataset to S3 bucket.
    #           (Data set conversion occurs during training process and costs a lot of time. it happens every time you train.)
    # (5) Set the code directory to "/path/faster_rcnn" on the website UI interface.
    # (6) Set the startup file to "train.py" on the website UI interface.
    # (7) Set the "Dataset path" and "Output file path" and "Job log path" to your path on the website UI interface.
    # (8) Create your job.
    #
    # Train 1p with Ascend
    # (1) Perform a or b.
    #       a. Set "enable_modelarts=True" on default_config.yaml file.
    #          Set "data_path='/cache/data'" on default_config.yaml file.
    #          Set "epoch_size: 20" on default_config.yaml file.
    #          (optional)Set "checkpoint_url='s3://dir_to_your_pretrained/'" on default_config.yaml file.
    #          Set other parameters on default_config.yaml file you need.
    #       b. Add "enable_modelarts=True" on the website UI interface.
    #          Add "data_path='/cache/data'" on the website UI interface.
    #          Add "epoch_size: 20" on the website UI interface.
    #          (optional)Add "checkpoint_url='s3://dir_to_your_pretrained/'" on the website UI interface.
    #          Add other parameters on the website UI interface.
    # (2) Prepare model code
    # (3) Upload or copy your pretrained model to S3 bucket if you want to finetune.
    # (4) Perform a or b. (suggested option a)
    #       a. zip MindRecord dataset to one zip file.
    #          Second, upload your zip dataset to S3 bucket.(you could also upload the origin mindrecord dataset, but it can be so slow.)
    #       b. Upload the original dataset to S3 bucket.
    #           (Data set conversion occurs during training process and costs a lot of time. it happens every time you train.)
    # (5) Set the code directory to "/path/faster_rcnn" on the website UI interface.
    # (6) Set the startup file to "train.py" on the website UI interface.
    # (7) Set the "Dataset path" and "Output file path" and "Job log path" to your path on the website UI interface.
    # (8) Create your job.
    #
    # Eval 1p with Ascend
    # (1) Perform a or b.
    #       a. Set "enable_modelarts=True" on default_config.yaml file.
    #          Set "checkpoint_url='s3://dir_to_your_trained_model/'" on base_config.yaml file.
    #          Set "checkpoint='./faster_rcnn/faster_rcnn_trained.ckpt'" on default_config.yaml file.
    #          Set "data_path='/cache/data'" on default_config.yaml file.
    #          Set other parameters on default_config.yaml file you need.
    #       b. Add "enable_modelarts=True" on the website UI interface.
    #          Add "checkpoint_url='s3://dir_to_your_trained_model/'" on the website UI interface.
    #          Add "checkpoint='./faster_rcnn/faster_rcnn_trained.ckpt'" on the website UI interface.
    #          Add "data_path='/cache/data'" on the website UI interface.
    #          Add other parameters on the website UI interface.
    # (2) Prepare model code
    # (3) Upload or copy your trained model to S3 bucket.
    # (4) Perform a or b. (suggested option a)
    #       a. First, zip MindRecord dataset to one zip file.
    #          Second, upload your zip dataset to S3 bucket.(you could also upload the origin mindrecord dataset, but it can be so slow.)
    #       b. Upload the original dataset to S3 bucket.
    #           (Data set conversion occurs during training process and costs a lot of time. it happens every time you train.)
    # (5) Set the code directory to "/path/faster_rcnn" on the website UI interface.
    # (6) Set the startup file to "eval.py" on the website UI interface.
    # (7) Set the "Dataset path" and "Output file path" and "Job log path" to your path on the website UI interface.
    # (8) Create your job.
  • Export on ModelArts (If you want to run in modelarts, please check the official documentation of modelarts, and you can start evaluating as follows)

  1. Export s8 multiscale and flip with voc val dataset on modelarts, evaluating steps are as follows:

    # (1) Perform a or b.
    #       a. Set "enable_modelarts=True" on base_config.yaml file.
    #          Set "file_name='faster_rcnn'" on base_config.yaml file.
    #          Set "file_format='MINDIR'" on base_config.yaml file.
    #          Set "checkpoint_url='/The path of checkpoint in S3/'" on beta_config.yaml file.
    #          Set "ckpt_file='/cache/checkpoint_path/model.ckpt'" on base_config.yaml file.
    #          Set other parameters on base_config.yaml file you need.
    #       b. Add "enable_modelarts=True" on the website UI interface.
    #          Add "file_name='faster_rcnn'" on the website UI interface.
    #          Add "file_format='MINDIR'" on the website UI interface.
    #          Add "checkpoint_url='/The path of checkpoint in S3/'" on the website UI interface.
    #          Add "ckpt_file='/cache/checkpoint_path/model.ckpt'" on the website UI interface.
    #          Add other parameters on the website UI interface.
    # (2) Upload or copy your trained model to S3 bucket.
    # (3) Set the code directory to "/path/faster_rcnn" on the website UI interface.
    # (4) Set the startup file to "export.py" on the website UI interface.
    # (5) Set the "Dataset path" and "Output file path" and "Job log path" to your path on the website UI interface.
    # (6) Create your job.

Script Description

Script and Sample Code

.
└─faster_rcnn
  ├─README.md                         // descriptions about fasterrcnn
  ├─ascend310_infer                   // application for 310 inference
  ├─scripts
    ├─run_standalone_train_ascend.sh  // shell script for standalone on ascend
    ├─run_standalone_train_gpu.sh     // shell script for standalone on GPU
    ├─run_distribute_train_ascend.sh  // shell script for distributed on ascend
    ├─run_distribute_train_gpu.sh     // shell script for distributed on GPU
    ├─run_infer_310.sh                // shell script for 310 inference
    └─run_eval_ascend.sh              // shell script for eval on ascend
    └─run_eval_gpu.sh                 // shell script for eval on GPU
    └─run_eval_onnx.sh                // shell script for ONNX model evaluation
  ├─src
    ├─FasterRcnn
      ├─__init__.py                   // init file
      ├─anchor_generator.py           // anchor generator
      ├─bbox_assign_sample.py         // first stage sampler
      ├─bbox_assign_sample_stage2.py  // second stage sampler
      ├─faster_rcnn_resnet.py         // fasterrcnn network
      ├─faster_rcnn_resnet50v1.py     //fasterrcnn network for ResNet50v1.0
      ├─fpn_neck.py                   //feature pyramid network
      ├─proposal_generator.py         // proposal generator
      ├─rcnn.py                       // rcnn network
      ├─resnet.py                     // backbone network
      ├─resnet50v1.py                 // backbone network for ResNet50v1.0
      ├─roi_align.py                  // roi align network
      └─rpn.py                        //  region proposal network
    ├─dataset.py                      // create dataset and process dataset
    ├─lr_schedule.py                  // learning ratio generator
    ├─network_define.py               // network define for fasterrcnn
    ├─util.py                         // routine operation
    └─model_utils
      ├─config.py                     // Processing configuration parameters
      ├─device_adapter.py             // Get cloud ID
      ├─local_adapter.py              // Get local ID
      └─moxing_adapter.py             // Parameter processing
  ├─default_config.yaml               // config for ResNet50
  ├─default_config_101.yaml           // config for ResNet101
  ├─default_config_152.yaml           // config for ResNet152
  ├─export.py                         // script to export AIR,MINDIR,ONNX model
  ├─eval.py                           // eval script
  ├─eval_onnx.py                      // ONNX evaluation script
  ├─postprocess.py                    // post process for 310 inference
  ├─requirements.txt                  // requirements file
  └─train.py                          // train scripts
`BACKBONE` should be in ["resnet_v1.5_50", "resnet_v1_101", "resnet_v1_152", "resnet_v1_50"]

if backbone in ("resnet_v1.5_50", "resnet_v1_101", "resnet_v1_152"):
    from src.FasterRcnn.faster_rcnn_resnet import Faster_Rcnn_Resnet
    "resnet_v1.5_50" -> "./default_config.yaml"
    "resnet_v1_101"  -> "./default_config_101.yaml"
    "resnet_v1_152"  -> "./default_config_152.yaml"

elif backbone == "resnet_v1_50":
    from src.FasterRcnn.faster_rcnn_resnet50v1 import Faster_Rcnn_Resnet
    "resnet_v1_50" -> "./default_config.yaml"

Training Process

Usage

on Ascend

# standalone training on ascend
bash run_standalone_train_ascend.sh [PRETRAINED_MODEL] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](optional)

# distributed training on ascend
bash run_distribute_train_ascend.sh [RANK_TABLE_FILE] [PRETRAINED_MODEL] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](optional)

Notes:

  1. Rank_table.json which is specified by RANK_TABLE_FILE is needed when you are running a distribute task. You can generate it by using the hccl_tools.
  2. As for PRETRAINED_MODEL,it should be a trained ResNet50 checkpoint. If you need to load Ready-made pretrained FasterRcnn checkpoint, you may make changes to the train.py script as follows.
# Comment out the following code
#   load_path = args_opt.pre_trained
#    if load_path != "":
#        param_dict = load_checkpoint(load_path)
#        for item in list(param_dict.keys()):
#            if not item.startswith('backbone'):
#                param_dict.pop(item)
#        load_param_into_net(net, param_dict)

# Add the following codes after optimizer definition since the FasterRcnn checkpoint includes optimizer parameters:
    lr = Tensor(dynamic_lr(config, rank_size=device_num), mstype.float32)
    opt = SGD(params=net.trainable_params(), learning_rate=lr, momentum=config.momentum,
              weight_decay=config.weight_decay, loss_scale=config.loss_scale)

    if load_path != "":
        param_dict = load_checkpoint(load_path)
        for item in list(param_dict.keys()):
            if item in ("global_step", "learning_rate") or "rcnn.reg_scores" in item or "rcnn.cls_scores" in item:
                param_dict.pop(item)
        load_param_into_net(opt, param_dict)
        load_param_into_net(net, param_dict)
  1. The original dataset path needs to be in the default_config_50.yaml、default_config_101.yaml、default_config_152.yaml,you can select "coco_root" or "image_dir".

Result

Training result will be stored in the example path, whose folder name begins with "train" or "train_parallel". You can find checkpoint file together with result like the following in loss_rankid.log.

# distribute training result(8p)
epoch: 1 step: 7393, rpn_loss: 0.12054, rcnn_loss: 0.40601, rpn_cls_loss: 0.04025, rpn_reg_loss: 0.08032, rcnn_cls_loss: 0.25854, rcnn_reg_loss: 0.14746, total_loss: 0.52655
epoch: 2 step: 7393, rpn_loss: 0.06561, rcnn_loss: 0.50293, rpn_cls_loss: 0.02587, rpn_reg_loss: 0.03967, rcnn_cls_loss: 0.35669, rcnn_reg_loss: 0.14624, total_loss: 0.56854
epoch: 3 step: 7393, rpn_loss: 0.06940, rcnn_loss: 0.49658, rpn_cls_loss: 0.03769, rpn_reg_loss: 0.03165, rcnn_cls_loss: 0.36353, rcnn_reg_loss: 0.13318, total_loss: 0.56598
...
epoch: 10 step: 7393, rpn_loss: 0.03555, rcnn_loss: 0.32666, rpn_cls_loss: 0.00697, rpn_reg_loss: 0.02859, rcnn_cls_loss: 0.16125, rcnn_reg_loss: 0.16541, total_loss: 0.36221
epoch: 11 step: 7393, rpn_loss: 0.19849, rcnn_loss: 0.47827, rpn_cls_loss: 0.11639, rpn_reg_loss: 0.08209, rcnn_cls_loss: 0.29712, rcnn_reg_loss: 0.18115, total_loss: 0.67676
epoch: 12 step: 7393, rpn_loss: 0.00691, rcnn_loss: 0.10168, rpn_cls_loss: 0.00529, rpn_reg_loss: 0.00162, rcnn_cls_loss: 0.05426, rcnn_reg_loss: 0.04745, total_loss: 0.10859

Evaluation Process

Usage

on Ascend

# eval on ascend
bash run_eval_ascend.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR](optional)

checkpoint can be produced in training process.

Images size in dataset should be equal to the annotation size in VALIDATION_JSON_FILE, otherwise the evaluation result cannot be displayed properly.

Result

Eval result will be stored in the example path, whose folder name is "eval". Under this, you can find result like the following in log.

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.360
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.586
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.385
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.229
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.402
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.441
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.299
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.487
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.515
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.346
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.562
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.631

Model Export

python export.py --config_path [CONFIG_PATH] --ckpt_file [CKPT_PATH] --device_target [DEVICE_TARGET] --file_format[EXPORT_FORMAT] --backbone [BACKBONE]

EXPORT_FORMAT should be in ["AIR", "MINDIR"] BACKBONE should be in ["resnet_v1.5_50", "resnet_v1_101", "resnet_v1_152", "resnet_v1_50"]

Inference Process

Usage

Before performing inference, the model file must be exported by export script on the Ascend910 environment. The following example only supports mindir inference with batch_size=1.

# Ascend310 inference
bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [ANN_FILE] [IMAGE_WIDTH](optional) [IMAGE_HEIGHT](optional) [DEVICE_ID](optional)

result

Inference result is saved in current path, you can find result like this in acc.log file.

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.349
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.570
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.369
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.211
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.391
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.435
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.295
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.476
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.503
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.330
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.547
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.622

ONNX Evaluation

  • Export your model to ONNX:

    python export.py --config_path default_config.yaml --ckpt_file path/to/fasterrcnn.ckpt --device_target GPU --file_format ONNX --file_name fasterrcnn
  • Run the script for ONNX evaluation:

    bash scripts/run_eval_onnx.sh [ANNO_PATH] [ONNX_MODEL] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR]"

    The result will be saved in log file and have the following form:

    Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.388
    Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.619
    Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.420
    Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.249
    Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.424
    Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.503
    Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.316
    Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.501
    Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.528
    Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.370
    Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.565
    Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.657

Model Description

Performance

Evaluation Performance

ResNet-50 backbone

Parameters Ascend
Model Version V1
Resource Ascend 910; CPU 2.60GHz, 192cores; Memory 755G; OS Euler2.8
uploaded Date 08/31/2020 (month/day/year)
MindSpore Version 1.0.0
Dataset COCO2017
Training Parameters epoch=12, batch_size=2
Optimizer SGD
Loss Function Softmax Cross Entropy ,Sigmoid Cross Entropy,SmoothL1Loss
Speed 1pc: 190 ms/step; 8pcs: 200 ms/step
Total time 1pc: 37.17 hours; 8pcs: 4.89 hours
Parameters (M) 250
Scripts fasterrcnn script

Inference Performance

ResNet-50 backbone

Parameters Ascend
Model Version V1
Resource Ascend 910; OS Euler2.8
Uploaded Date 08/31/2020 (month/day/year)
MindSpore Version 1.0.0
Dataset COCO2017
batch_size 2
outputs mAP
Accuracy IoU=0.50: 58.6%
Model for inference 250M (.ckpt file)

Please check the official homepage.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published