Skip to content
/ meemi Public
forked from y3ro/meemi

Improving cross-lingual word embeddings by meeting in the middle

License

Notifications You must be signed in to change notification settings

yeraidm/meemi

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

50 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Meemi

The following repository includes the code and pre-trained cross-lingual word embeddings from the paper Improving cross-lingual word embeddings by meeting in the middle (EMNLP 2018).

Pre-trained embeddings

We release the 300-dimension word embeddings used in our experiments (English, Spanish, Italian, German and Finnish) as binary bin files:

  • Monolingual FastText embeddings: Available here
  • Baseline cross-lingual embeddings: Available here
  • Cross-lingual embeddings post-processed with Meemi: Available here

Note 1: All vocabulary words are lowercased.

Note 2: If you would like to convert the binary files to txt, you can use convertvec.

Requirements:

  • Python 3
  • NumPy
  • Gensim
  • If you use VecMap or MUSE, please also check their corresponding GitHub pages. Note that we use a previous version of these tools, of which there is a copy in this repository (WIP).

Usage

get_crossembs.sh SOURCE_EMBEDDINGS TARGET_EMBEDDINGS DICTIONARY_FILE [-vecmap | -muse TRAIN_DICT VALID_DICT]

Apply meemi to your cross-lingual embeddings

get_crossembs.sh SOURCE_EMBEDDINGS TARGET_EMBEDDINGS DICTIONARY_FILE

Example:

get_crossembs.sh EN-ES.english.vecmap.txt EN-ES.spanish.vecmap.txt en-es.dict.txt

Use VecMap to align monolingual embeddings and then meemi

get_crossembs.sh SOURCE_EMBEDDINGS TARGET_EMBEDDINGS DICTIONARY_FILE -vecmap

Use MUSE to align monolingual embeddings and then meemi

get_crossembs.sh SOURCE_EMBEDDINGS TARGET_EMBEDDINGS DICTIONARY_FILE -muse TRAIN_SIZE VALID_SIZE

Experiments

Bilingual Dictionary Induction

In order to test your embeddings on bilingual dictionary induction type the following:

python test.py SOURCE_EMBEDDINGS TARGET_EMBEDDINGS < DICTIONARY_FILE

Word similarity

In order to test your embeddings on monolingual word similarity type the following:

python test_similarity_monolingual.py EMBEDDINGS DATASET

You can also test various datasets at the same time:

python test_similarity_monolingual.py EMBEDDINGS DATASET1 [DATASET2] ... [DATASETN]

Likewise, to test your cross-lingual embeddings on cross-lingual word similarity type the following:

python test_similarity_crosslingual.py SOURCE_EMBEDDINGS TARGET_EMBEDDINGS DATASET

As with monolingual similarity, you can also test various datasets at the same time. Below is an example of how to test your English-Spanish cross-lingual embeddings on all the monolingual and cross-lingual word similarity datasets:

python test_similarity_monolingual.py EN-ES.english.vecmap.meemi.bin data/SimLex/simlex-999_english.txt data/SemEval2018-subtask1-monolingual/english.txt data/rg65-monolingual/rg65_english.txt data/WS353-monolingual/WS353-english-sim.txt
python test_similarity_monolingual.py EN-ES.english.vecmap.meemi.bin data/SemEval2018-subtask1-monolingual/spanish.txt data/rg65-monolingual/rg65_spanish.txt 
python test_similarity_crosslingual.py EN-ES.english.vecmap.meemi.bin EN-ES.spanish.vecmap.meemi.bin data/SemEval2018-subtask2-crosslingual/en-es.txt data/rg65-crosslingual/rg65_EN-ES.txt

Note: This code assumes that lowercased word embeddings are provided as input. If you would like to mantain the casing, simply remove the .lower() commands in the evaluation scripts.

Cross-lingual Hypernym Discovery

Hypernym Discovery is the task to retrieve, for a given term, a ranked list of valid hypernyms. In this experiment, a hypernym discovery system is trained in English data (and possibly in a weakly supervised setting with some target language data), and makes predictions in the target language.

To run the hypernym discovery experiments, launch the following command:

python3 experiments/hypernym_discovery/taxoembed.py -wvtrain SOURCE_EMBEDDINGS -wvtest TARGET_EMBEDDINGS -vtest TARGET_VOCABULARY -hypotrain SOURCE_HYPONYMS -hypertrain SOURCE_HYPERNYMS -test TARGET_HYPONYMS -newtrain TARGET_LANG_TRAINING_INSTANCES -npairs NUMB_TRAINING_INSTANCES -o OUTPUT_FOLDER 

The predictions of the model are saved in OUTPUT_FOLDER with the name [TARGET_EMBEDDINGS]_[NUMB_TRAINING_INSTANCES]_[TARGET_LANG_TRAINING_INSTANCES]_W.txt.

For example, evaluating a hypernym discovery model for Spanish trained on VecMap English vectors and 500 additional instances in Spanish:

 python3 experiments/hypernym_discovery/taxoembed.py -wvtrain EN-ES.english.vecmap.bin -wvtest EN-ES.spanish.vecmap.bin -vtest experiments/hypernym_discovery/SemEval2018-Task9/vocabulary/1C.spanish.vocabulary.txt -hypotrain experiments/hypernym_discovery/SemEval2018-Task9/training/data/1A.english.training.data.txt -hypertrain experiments/hypernym_discovery/SemEval2018-Task9/training/gold/1A.english.training.gold.txt -test experiments/hypernym_discovery/SemEval2018-Task9/test/data/1C.spanish.test.data.txt -o experiments/hypernym_discovery/ -newtrain experiments/hypernym_discovery/SemEval2018-Task9/utils/spanish_train.tsv -npairs 500

Then, call the official SemEval task scorer passing as arguments the gold file and the predictions file generated in the previous step.

python experiments/hypernym_discovery/SemEval2018-Task9/task9-scorer.py GOLD_FILE PREDICTIONS_FILE

For the previous example, the exact command would be:

python experiments/hypernym_discovery/SemEval2018-Task9/task9-scorer.py experiments/hypernym_discovery/SemEval2018-Task9/test/gold/1C.spanish.test.gold.txt experiments/hypernym_discovery/EN-ES.spanish.vecmap.bin_500_1C.spanish.output_W.txt 

Reference paper

If you use any of these resources, please cite the following paper:

@InProceedings{doval:meemiemnlp2018,
  author = 	"Doval, Yerai and Camacho-Collados, Jose and Espinosa-Anke, Luis and Schockaert, Steven",
  title = 	"Improving cross-lingual word embeddings by meeting in the middle",
  booktitle = 	"Proceedings of EMNLP",
  year = 	"2018",
  publisher = 	"Association for Computational Linguistics",
  location = 	"Brussels, Belgium"
}

If you use VecMap or MUSE, please also cite their corresponding papers.

About

Improving cross-lingual word embeddings by meeting in the middle

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 64.0%
  • Jupyter Notebook 21.8%
  • Shell 14.2%