Skip to content

fisherbln/virt-ops

Repository files navigation

Starting to research basic structure of new homelab git-ops setup

Operating on Proxmox, would like to build all base infrastructure as code.

Existing repos that do this on proxmox: https://github.com/angelnu/k8s-gitops

My home operations repository :octocat:

... managed with Flux, Renovate and GitHub Actions πŸ€–

DiscordΒ Β Β  KubernetesΒ Β Β  Renovate

Home-InternetΒ Β Β  Status-PageΒ Β Β  Alertmanager


πŸ“– Overview

This is a mono repository for my home infrastructure and Kubernetes cluster. I try to adhere to Infrastructure as Code (IaC) and GitOps practices using the tools like Ansible, Terraform, Kubernetes, Flux, Renovate and GitHub Actions.


β›΅ Kubernetes

There is a template over at onedr0p/flux-cluster-template if you wanted to try and follow along with some of the practices I use here.

Installation

My cluster is k3s provisioned overtop bare-metal Ubuntu Server using the Ansible galaxy role ansible-role-k3s. This is a semi hyper-converged cluster, workloads and block storage are sharing the same available resources on my nodes while I have a separate server for (NFS) file storage.

πŸ”Έ Click here to see my Ansible playbooks and roles.

Core Components

  • actions-runner-controller: Self-hosted Github runners.
  • calico: Internal Kubernetes networking plugin.
  • cert-manager: Creates SSL certificates for services in my Kubernetes cluster.
  • external-dns: Automatically manages DNS records from my cluster in a cloud DNS provider.
  • external-secrets: Managed Kubernetes secrets using 1Password Connect.
  • ingress-nginx: Ingress controller to expose HTTP traffic to pods over DNS.
  • rook: Distributed block storage for peristent storage.
  • sops: Managed secrets for Kubernetes, Ansible and Terraform which are commited to Git.
  • tf-controller: Additional Flux component used to run Terraform from within a Kubernetes cluster.
  • volsync and snapscheduler: Backup and recovery of persistent volume claims.

GitOps

Flux watches my kubernetes folder (see Directories below) and makes the changes to my cluster based on the YAML manifests.

The way Flux works for me here is it will recursively search the kubernetes/apps folder until it finds the most top level kustomization.yaml per directory and then apply all the resources listed in it. That aforementioned kustomization.yaml will generally only have a namespace resource and one or many Flux kustomizations. Those Flux kustomizations will generally have a HelmRelease or other resources related to the application underneath it which will be applied.

Renovate watches my entire repository looking for dependency updates, when they are found a PR is automatically created. When some PRs are merged Flux applies the changes to my cluster.

Directories

This Git repository contains the following directories under kubernetes.

πŸ“ kubernetes      # Kubernetes cluster defined as code
β”œβ”€πŸ“ bootstrap     # Flux installation
β”œβ”€πŸ“ flux          # Main Flux configuration of repository
β””β”€πŸ“ apps          # Apps deployed into my cluster grouped by namespace (see below)

Cluster layout

Below is a a high level look at the layout of how my directory structure with Flux works. In this brief example you are able to see that authelia will not be able to run until lldap and cloudnative-pg are running. It also shows that the Cluster custom resource depends on the cloudnative-pg Helm chart. This is needed because cloudnative-pg installs the Cluster custom resource definition in the Helm chart.

# Key: <kind> :: <metadata.name>
GitRepository :: home-ops-kubernetes
    Kustomization :: cluster
        Kustomization :: cluster-apps
            Kustomization :: cluster-apps-cloudnative-pg
                HelmRelease :: cloudnative-pg
            Kustomization :: cluster-apps-cloudnative-pg-cluster
                DependsOn:
                    Kustomization :: cluster-apps-cloudnative-pg
                Cluster :: postgres
            Kustomization :: auth-lldap
                HelmRelease :: lldap
                DependsOn:
                    Kustomization :: cluster-apps-cloudnative-pg-cluster
            Kustomization :: auth-authelia
                DependsOn:
                    Kustomization :: auth-lldap
                    Kustomization :: cluster-apps-cloudnative-pg-cluster
                HelmRelease :: authelia

Networking

Click to see a high level network diagram dns
Name CIDR
Management VLAN 10.28.10.0/24
Kubernetes Nodes VLAN 10.28.28.0/24
Kubernetes external services (Cilium w/ BGP) 10.45.0.0/24
Kubernetes pods (Cilium w/ BGP) 172.22.0.0/16
Kubernetes services (Cilium w/ BGP) 172.24.0.0/14
Storage Cluster CIDR (k3s) 172.30.0.0/16
Storage Services CIDR (k3s) 172.31.0.0/16
  • HAProxy is configured on my VyOS router for the Kubernetes Control Plane Load Balancer.
  • Cilium is configured with externalIPs to expose Kubernetes services with their own IP over BGP which is configured on my router.

☁️ Cloud Dependencies

While most of my infrastructure and workloads are selfhosted I do rely upon the cloud for certain key parts of my setup. This saves me from having to worry about two things. (1) Dealing with chicken/egg scenarios and (2) services I critically need whether my cluster is online or not.

The alternative solution to these two problems would be to host a Kubernetes cluster in the cloud and deploy applications like HCVault, Vaultwarden, ntfy, and Gatus. However, maintaining another cluster and monitoring another group of workloads is a lot more time and effort than I am willing to put in.

Service Use Cost
Doppler Secrets with External Secrets Free
Cloudflare Domain and R2 ~$30/yr
Migadu Email hosting ~$20/yr
GCP Voice interactions with Home Assistant over Google Assistant Free
GitHub Hosting this repository and continuous integration/deployments Free
Newsgroup Ninja Usenet access ~$70/yr
NextDNS My routers DNS server which includes AdBlocking ~$20/yr
Pushover Kubernetes Alerts and application notifications Free
Terraform Cloud Storing Terraform state Free

🌐 DNS

Internal DNS

Bind9 and dnsdist are deployed on Vyos as containers. In my cluster external-dns is deployed with the RFC2136 provider that populates Bind9 with all my ingresses DNS records.

dnsdist has some downstream DNS servers configured such as Bind9 (above) and NextDNS profiles. All my clients use dnsdist as the upstream DNS server, this allows for more granularity with configuring DNS across my networks. These could be things like giving each of my VLANs a specific NextDNS profile, or having all requests for my domain forward to Bind9 on certain networks, or only using 1.1.1.1 instead of NextDNS on certain networks where adblocking isn't needed.

External DNS

Another external-dns instance is deployed in my cluster and configure to sync DNS records to Cloudflare. The only ingresses this external-dns instance looks at to gather DNS records to put in Cloudflare are ones that have an annotation of external-dns.alpha.kubernetes.io/target.


πŸ”§ Hardware

Click to see da rack! rack
Device Count OS Disk Size Data Disk Size Ram Operating System Purpose
Intel NUC8i5BEH 3 1TB SSD 1TB NVMe (rook-ceph) 64GB Debian Kubernetes Masters
Intel NUC8i7BEH 3 1TB SSD 1TB NVMe (rook-ceph) 64GB Debian Kubernetes Workers
PowerEdge T340 1 2TB SSD 8x12TB ZFS (mirrored vdevs) 64GB Ubuntu NFS + Backup Server
Lenovo SA120 1 - 6x12TB (+2 hot spares) - - DAS
Raspberry Pi 4 1 32GB (SD) - 4GB PiKVM (Arch) Network KVM
TESmart 8 Port KVM Switch 1 - - - - Network KVM (PiKVM)
HP EliteDesk 800 G3 SFF 1 256GB NVMe - 8GB Vyos (Debian) Router
Unifi US-16-XG 1 - - - - 10Gb Core Switch
Unifi USW-Enterprise-24-PoE 1 - - - - 2.5Gb PoE Switch
APC SMT1500RM2U w/ NIC 1 - - - - UPS
Unifi USP PDU Pro 1 - - - - PDU

⭐ Stargazers

Star History Chart


🀝 Gratitude and Thanks

Thanks to all the people who donate their time to the Kubernetes @Home Discord community. A lot of inspiration for my cluster comes from the people that have shared their clusters using the k8s-at-home GitHub topic. Be sure to check out the Kubernetes @Home search for ideas on how to deploy applications or get ideas on what you can deploy.


πŸ“œ Changelog

See my awful commit history


πŸ” License

See LICENSE