Skip to content

AutoTCL and Parametric Augmentation for Time Series Contrastive Learning(ICLR2024)

Notifications You must be signed in to change notification settings

AslanDing/AutoTCL

Repository files navigation



Figure 1. Overall framework of our work.

In this paper, we propose a contrastive learning framework with parametric augmentation, AutoTCL, which can be adaptively employed to support time series representation learning. The proposed approach is encoder-agnostic, allowing it to be seamlessly integrated with different backbone encoders.

Requirements

We use python 3.9, the packages main contain numpy, scikit-learn, torch, tqdm, matplotlib, pandas. We also provide a requirements.txt(contains some other irrelevant packages).

dataset

  1. ETT dataset (link)
  2. Electricity dataset (link), preprocessing by this file (link)
  3. Weather Dataset (link), from Informer (link)
  4. For public datasets, you can also find sources in TS2Vec, CoST.
  5. For lora datasets, you can contact with Professor Mo Sha.

usage

python train_forecasting_autotcl_cost.py 
--dataset <dataset> 
--gpu <num> 
--seed <random_seed> 
--archive <forecast_csv_univar/forecast_csv>
--load_default <True/False> 

--batch-size <N> 
--lr <encoder_learning_rate> 
--meta_lr <augument_learning_rate>
--mask_mode <noise_style_encoder> 
--augmask_mode <noise_style_augument> 

--repr_dims <embedding_dim>
--hidden_dims <hid_dim> 
--aug_dim <aug_hid_dim> 
--aug_depth <augument_layers> 

--max_train_length <input_time_length> 
--epochs <training_epoch> 
--gumbel_bias <gum_bias>
--gamma_zeta <zeta_in_gumbel>
--ratio_step <ratio_update_between_encoder_augument> 
--hard_mask <hard_gumbel>

--local_weight <local_infonce_encoder>
--reg_weight <reg_weight_hx>
--regular_weight <time_constraint_weight_hx>
args explanation type options
dataset dataset name string ETTh1/ETTh2/ETTm1/electricity/WTH
gpu the number of GPU int -
seed random seed int -
archive univar forecasting or multivar string forecast_csv_univar/forecast_csv
load_default load pre-defined hyperparemeters bool True/False
batch-size the batch size of input int -
lr learning rate for optimize the encoder network float -
meta_lr learning rate for optimize the augumentation network float -
mask_mode how to add noise for optimize the encoder network string continuous/mask_last/all_true/all_false/binomial
augmask_mode how to add noise for optimize the augumentation network string continuous/mask_last/all_true/all_false/binomial
repr_dims embedding dimension of the encoder network int -
hidden_dims hidden dimension of the encoder network int -
aug_dim hidden dimension of the augument network int -
aug_depth NN layers of the augment network int -
max_train_length input time length int -
epochs training epochs int -
gumbel_bias bias for gumble softmax float -
gumbel_zeta zeta for gumble softmax float -
ratio_step the ratio of encoder optimize : augument network optimize int -
hard_mask h(x) is hard(binary) or soft bool True/False
local_weight weight of local infoNCE loss introduced by InfoTS float -
reg_weight weight of the regularization of h(x) float -
regular_weight weight of the time constraint of h(x) float -

Main Results

Our experiments conducted on five public datasets and one private dataset. Experiments on univariate forecasting tasks demonstrate the highly competitive results of our method, with an average 6.5% reduction in MSE and 4.7% in MAE over the leading baselines. In classification tasks, AutoTCL achieves a 1.2% increase in average accuracy.

In this repo we provide code and default parameters to reproduce our experiments(based on tabl 1 and 2).



Figure 2. Overall experiments average results.



Figure 3. Detail experiments results in univariate forecasting setting.



Figure 4. Detail experiments results in multivariate forecasting setting.

Acknowledgement

Our code are based on the following repositories. We thank the original authors for open-sourcing their work.

  1. TS2Vec(https://github.com/zhihanyue/ts2vec)
  2. CoST(https://github.com/salesforce/CoST)
  3. infoTS(https://github.com/chengw07/InfoTS)

Citation

If this repo is useful for you, please consider citing our paper as follows:

@article{zheng2024parametric,
  title={Parametric Augmentation for Time Series Contrastive Learning},
  author={Zheng, Xu and Wang, Tianchun and Cheng, Wei and Ma, Aitian and Chen, Haifeng and Sha, Mo and Luo, Dongsheng},
  journal={arXiv preprint arXiv:2402.10434},
  year={2024}
}

About

AutoTCL and Parametric Augmentation for Time Series Contrastive Learning(ICLR2024)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

 
 
 

Languages