Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

clang-12: Unsupported relocation type: R_386_PLT32 #1210

Closed
arndb opened this issue Dec 7, 2020 · 18 comments
Closed

clang-12: Unsupported relocation type: R_386_PLT32 #1210

arndb opened this issue Dec 7, 2020 · 18 comments
Assignees
Labels
[ARCH] x86 This bug impacts ARCH=i386 [BUG] linux A bug that should be fixed in the mainline kernel. [FIXED][LINUX] 5.12 This bug was fixed in Linux 5.12

Comments

@arndb
Copy link

arndb commented Dec 7, 2020

The latest clang-12 fails to build some 32-bit x86 kernels:

Unsupported relocation type: R_386_PLT32 (4)
make[5]: *** [/git/arm-soc/arch/x86/boot/compressed/Makefile:120: arch/x86/boot/compressed/vmlinux.relocs] Error 1

This was no problem with a slightly older clang-12 snapshot, or with the latest clang-11.

@nickdesaulniers
Copy link
Member

Didn't @nivedita76 do some work to avoid PLT relocations in 32b x86 boot/?

@nivedita76
Copy link

@arndb Is that from arch/x86/tools/relocs? That indicates a PLT32 relocation in the main kernel, which is unrelated to the boot/compressed work. The tool handles PLT relocs on 64-bit but apparently not on 32-bit, not sure why: they should be equivalent to PC32 on both, right?

@nivedita76
Copy link

nivedita76 commented Dec 7, 2020

@MaskRay seems to have a commit that looks vaguely related, though I'd not expect it to produce R_386_PLT32 looking at the description.
https://reviews.llvm.org/rG37f0c8df47d84ba311fc9a2c1884935ba8961e84

hjl says R_386_PLT32 should only be produced for PIC code, though I don't quite follow the reasoning.
https://llvm.org/pr36674

@arndb
Copy link
Author

arndb commented Dec 7, 2020

Yes, to confirm, this is PLT32 relocations in the main kernel. I don't have a reproducer at hand (currently building with clang-11, but could go back to clang-12 if needed), but from what I remember, it appeared that the PLT32 relocations were for compiler-generated function calls to things like memset(), memcpy() or stackprotector, not for normal function calls.

@nickdesaulniers nickdesaulniers added [BUG] Untriaged Something isn't working [ARCH] x86 This bug impacts ARCH=i386 labels Dec 7, 2020
@MaskRay
Copy link
Member

MaskRay commented Dec 8, 2020

@MaskRay seems to have a commit that looks vaguely related, though I'd not expect it to produce R_386_PLT32 looking at the description.
https://reviews.llvm.org/rG37f0c8df47d84ba311fc9a2c1884935ba8961e84

hjl says R_386_PLT32 should only be produced for PIC code, though I don't quite follow the reasoning.
https://llvm.org/pr36674

There is no fundamental reason that GNU as's i386 port cannot use R_386_PLT32. Once it does, we can change LLVM MC as well.

Actually, PLT32 is preferred (see https://sourceware.org/pipermail/binutils/2020-April/000424.html).
https://llvm.org/pr36674 is probably about (a) establishing the convention that PC32 is for -fno-pic and non-pic PLT while PLT32 is for -fpie/-fpic and pic PLT (b) some legacy software processing relocations does not support PLT32.

commit 2585b7a5ce5830e60a089aa2316a329558902f0c
Author: H.J. Lu <hidden>
Date:   Sun Jul 19 06:51:32 2020

    x86: Change PLT32 reloc against section to PC32
    
    Commit 292676c1 resolved PLT32 reloc aganst local symbol to section.
    Since PLT32 relocation must be against symbols, turn such PLT32
    relocation into PC32 relocation.

I have tried make -sk -j 50 ARCH=i386 LLVM=1 O=/tmp/out/i386 -j 50 i386_defconfig vmlinux with Clang built today and it works.

@arndb
Copy link
Author

arndb commented Dec 8, 2020

I got a minimized test case: https://godbolt.org/z/GP7q7a

All compilers turn a strcat() into strlen() plus store, but the generated call to strlen() in clang-12 uses a PLT32 reloc.

@arndb
Copy link
Author

arndb commented Dec 8, 2020

I think it happens to work in defconfig because we build i386 with -ffreestanding, which prevents the strcat() optimization from my example (I have a local patch to remove the -ffreestanding), and the defconfig does not generate calls to __stack_chk_fail(), which have the same problem when enabled.

@MaskRay
Copy link
Member

MaskRay commented Dec 8, 2020

The difference is due to [TargetMachine] Don't imply dso_local on function declarations in Reloc::Static model for ELF/wasm.

LLVM synthesized function declarations (e.g. strlen, as opposed to declarations written by the user) do not have the dso_local specifier. PLT32 can prevent canonical PLT entries (SHN_UNDEF with non-zero st_value) and is thus preferred. I think in the kernel no function can be preemptible (interposable) and thus every PLT32 will be handled the same way as PC32.

arch/x86/tools/relocs.c and arch/x86/kernel/module.c should handle R_386_PLT32 similar to R_386_PC32.

@nivedita76
Copy link

I think it happens to work in defconfig because we build i386 with -ffreestanding, which prevents the strcat() optimization from my example (I have a local patch to remove the -ffreestanding), and the defconfig does not generate calls to __stack_chk_fail(), which have the same problem when enabled.

@nickdesaulniers did https://lore.kernel.org/lkml/20200817220212.338670-5-ndesaulniers@google.com/ not get merged?

@nickdesaulniers
Copy link
Member

@nickdesaulniers did https://lore.kernel.org/lkml/20200817220212.338670-5-ndesaulniers@google.com/ not get merged?

I don't think so; 1e1b6d6 is ultimately what shipped.

nathanchance pushed a commit that referenced this issue Dec 15, 2020
running kernel with CONFIG_DEBUG_LOCKS_ALLOC enabled will below warning:

BUG: key ffff502e09807098 has not been registered!
DEBUG_LOCKS_WARN_ON(1)
WARNING: CPU: 5 PID: 129 at kernel/locking/lockdep.c:4623
	lockdep_init_map_waits+0xe8/0x250
Modules linked in:
CPU: 5 PID: 129 Comm: kworker/5:1 Tainted: G
       W         5.10.0-rc1-00277-ged49f224ca3f-dirty #1210
Hardware name: Qualcomm Technologies, Inc. Robotics RB5 (DT)
Workqueue: events deferred_probe_work_func
pstate: 80c00005 (Nzcv daif +PAN +UAO -TCO BTYPE=--)
pc : lockdep_init_map_waits+0xe8/0x250
lr : lockdep_init_map_waits+0xe8/0x250
 [ Trimmed ]

Call trace:
 lockdep_init_map_waits+0xe8/0x250
 __kernfs_create_file+0x78/0x180
 sysfs_add_file_mode_ns+0x94/0x1c8
 internal_create_group+0x110/0x3e0
 sysfs_create_group+0x18/0x28
 devm_device_add_group+0x4c/0xb0
 add_all_attributes+0x438/0x490
 sdw_slave_sysfs_dpn_init+0x128/0x138
 sdw_slave_sysfs_init+0x80/0xa0
 sdw_drv_probe+0x94/0x170
 really_probe+0x118/0x3e0
 driver_probe_device+0x5c/0xc0

 [ Trimmed ]

CPU: 5 PID: 129 Comm: kworker/5:1 Tainted: G
     W         5.10.0-rc1-00277-ged49f224ca3f-dirty #1210
Hardware name: Qualcomm Technologies, Inc. Robotics RB5 (DT)
Workqueue: events deferred_probe_work_func
Call trace:
 dump_backtrace+0x0/0x1c0
 show_stack+0x18/0x68
 dump_stack+0xd8/0x134
 __warn+0xa0/0x158
 report_bug+0xc8/0x178
 bug_handler+0x20/0x78
 brk_handler+0x70/0xc8

[ Trimmed ]

Fix this by initializing dynamically allocated sysfs attribute to keep lockdep happy!

Fixes: bcac590 ("soundwire: add Slave sysfs support")
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Acked-by: Pierre-Louis Bossart <pierre-louis.bossart@linux.intel.com>
Link: https://lore.kernel.org/r/20201104112941.1134-1-srinivas.kandagatla@linaro.org
Signed-off-by: Vinod Koul <vkoul@kernel.org>
@MaskRay
Copy link
Member

MaskRay commented Jan 6, 2021

I'll post a kernel patch.

--- i/arch/x86/Makefile
+++ w/arch/x86/Makefile
@@ -75,7 +75,7 @@ ifeq ($(CONFIG_X86_32),y)
         KBUILD_CFLAGS += $(cflags-y)
 
         # temporary until string.h is fixed
-        KBUILD_CFLAGS += -ffreestanding
+        #KBUILD_CFLAGS += -ffreestanding
 else
         BITS := 64
         UTS_MACHINE := x86_64

With top-of-trunk clang, this reproduces

(cd ~/Dev/linux; PATH=/tmp/RelA/bin:$PATH make -sk -j 50 ARCH=i386 LLVM=1 O=/tmp/out/i386 -j 50 i386_defconfig all )

@MaskRay MaskRay self-assigned this Jan 6, 2021
@MaskRay
Copy link
Member

MaskRay commented Jan 6, 2021

edit: Sent [PATCH] x86: Treat R_386_PLT32 as R_386_PC32

From f09216123597624e1d07e6c136f75054f82a8d2c Mon Sep 17 00:00:00 2001
From: Fangrui Song <hidden>
Date: Wed, 6 Jan 2021 15:56:02 -0800
Subject: [PATCH] x86: Treat R_386_PLT32 as R_386_PC32

This is similar to commit b21ebf2fb4cde1618915a97cc773e287ff49173e "x86:
Treat R_X86_64_PLT32 as R_X86_64_PC32", but for i386.  As far as Linux
kernel is concerned, R_386_PLT32 can be treated the same as R_386_PC32.

R_386_PC32/R_X86_64_PC32 are PC-relative relocation types with the
requirement that the symbol address is significant.
R_386_PLT32/R_X86_64_PLT32 are PC-relative relocation types without the
address significance requirement.

On x86-64, there is no PIC vs non-PIC PLT distinction and R_X86_64_PLT32
is used for `call/jmp foo` and `call/jmp foo@PLT` with newer (2018) GNU
as/LLVM integrated assembler.

On i386, there are 2 types of PLTs, PIC and non-PIC. Currently the
convention is to use R_386_PC32 for non-PIC PLT and R_386_PLT32 for PIC
PLT but R_386_PLT32 is arguably preferable for -fno-pic code as well:
this can avoid a "canonical PLT entry" (st_shndx=0, st_value!=0) if the
symbol turns out to be defined externally. Latest Clang (since
961f31d8ad14c66829991522d73e14b5a96ff6d4) can use R_386_PLT32 for
compiler produced symbols (if we drop -ffreestanding for CONFIG_X86_32)
and future GCC may use R_386_PLT32 as well if the maintainers agree to
adopt an option like -fdirect-access-external-data to avoid "canonical
PLT entry"/copy relocations
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=98112

Link: https://github.com/ClangBuiltLinux/linux/issues/1210
Reported-by: Arnd Bergmann <hidden>
Signed-off-by: Fangrui Song <hidden>
---
 arch/x86/kernel/module.c | 1 +
 arch/x86/tools/relocs.c  | 2 ++
 2 files changed, 3 insertions(+)

diff --git a/arch/x86/kernel/module.c b/arch/x86/kernel/module.c
index 34b153cbd4ac..5e9a34b5bd74 100644
--- a/arch/x86/kernel/module.c
+++ b/arch/x86/kernel/module.c
@@ -114,6 +114,7 @@ int apply_relocate(Elf32_Shdr *sechdrs,
 			*location += sym->st_value;
 			break;
 		case R_386_PC32:
+		case R_386_PLT32:
 			/* Add the value, subtract its position */
 			*location += sym->st_value - (uint32_t)location;
 			break;
diff --git a/arch/x86/tools/relocs.c b/arch/x86/tools/relocs.c
index ce7188cbdae5..717e48ca28b6 100644
--- a/arch/x86/tools/relocs.c
+++ b/arch/x86/tools/relocs.c
@@ -867,6 +867,7 @@ static int do_reloc32(struct section *sec, Elf_Rel *rel, Elf_Sym *sym,
 	case R_386_PC32:
 	case R_386_PC16:
 	case R_386_PC8:
+	case R_386_PLT32:
 		/*
 		 * NONE can be ignored and PC relative relocations don't
 		 * need to be adjusted.
@@ -910,6 +911,7 @@ static int do_reloc_real(struct section *sec, Elf_Rel *rel, Elf_Sym *sym,
 	case R_386_PC32:
 	case R_386_PC16:
 	case R_386_PC8:
+	case R_386_PLT32:
 		/*
 		 * NONE can be ignored and PC relative relocations don't
 		 * need to be adjusted.
-- 
2.29.2.729.g45daf8777d-goog

@dileks dileks added the [PATCH] Submitted A patch has been submitted for review label Jan 7, 2021
@dileks
Copy link
Collaborator

dileks commented Jan 7, 2021

fengguang pushed a commit to 0day-ci/linux that referenced this issue Jan 7, 2021
This is similar to commit b21ebf2 "x86:
Treat R_X86_64_PLT32 as R_X86_64_PC32", but for i386.  As far as Linux
kernel is concerned, R_386_PLT32 can be treated the same as R_386_PC32.

R_386_PC32/R_X86_64_PC32 are PC-relative relocation types with the
requirement that the symbol address is significant.
R_386_PLT32/R_X86_64_PLT32 are PC-relative relocation types without the
address significance requirement.

On x86-64, there is no PIC vs non-PIC PLT distinction and an
R_X86_64_PLT32 relocation is produced for both `call/jmp foo` and
`call/jmp foo@PLT` with newer (2018) GNU as/LLVM integrated assembler.

On i386, there are 2 types of PLTs, PIC and non-PIC. Currently the
convention is to use R_386_PC32 for non-PIC PLT and R_386_PLT32 for PIC
PLT, but R_386_PLT32 is arguably preferable for -fno-pic code as well:
this can avoid a "canonical PLT entry" (st_shndx=0, st_value!=0) if the
symbol turns out to be defined externally. Latest Clang (since
961f31d8ad14c66829991522d73e14b5a96ff6d4) can use R_386_PLT32 for
compiler produced symbols (if we drop -ffreestanding for CONFIG_X86_32,
library call optimization can produce newer declarations) and future GCC
may use R_386_PLT32 as well if the maintainers agree to adopt an option
like -fdirect-access-external-data to avoid "canonical PLT entry"/copy
relocations https://gcc.gnu.org/bugzilla/show_bug.cgi?id=98112

Link: ClangBuiltLinux#1210
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Fangrui Song <maskray@google.com>
@dileks
Copy link
Collaborator

dileks commented Jan 7, 2021

@nathanchance nathanchance added this to the LLVM 12 milestone Jan 14, 2021
nickdesaulniers added a commit to ClangBuiltLinux/continuous-integration2 that referenced this issue Jan 21, 2021
cc #17

Still need to add check_logs.py support once
ClangBuiltLinux/linux#1210 is fixed.
nickdesaulniers added a commit to ClangBuiltLinux/continuous-integration2 that referenced this issue Jan 21, 2021
cc #17

Still need to add check_logs.py support once
ClangBuiltLinux/linux#1210 is fixed.
@nickdesaulniers nickdesaulniers added [BUG] linux A bug that should be fixed in the mainline kernel. [PATCH] Accepted A submitted patch has been accepted upstream and removed [BUG] Untriaged Something isn't working labels Jan 28, 2021
SonicBSV pushed a commit to SonicBSV/android_kernel_asus_sdm660 that referenced this issue Aug 23, 2022
[ Upstream commit bb73d07148c405c293e576b40af37737faf23a6a ]

This is similar to commit

  b21ebf2fb4cd ("x86: Treat R_X86_64_PLT32 as R_X86_64_PC32")

but for i386. As far as the kernel is concerned, R_386_PLT32 can be
treated the same as R_386_PC32.

R_386_PLT32/R_X86_64_PLT32 are PC-relative relocation types which
can only be used by branches. If the referenced symbol is defined
externally, a PLT will be used.

R_386_PC32/R_X86_64_PC32 are PC-relative relocation types which can be
used by address taking operations and branches. If the referenced symbol
is defined externally, a copy relocation/canonical PLT entry will be
created in the executable.

On x86-64, there is no PIC vs non-PIC PLT distinction and an
R_X86_64_PLT32 relocation is produced for both `call/jmp foo` and
`call/jmp foo@PLT` with newer (2018) GNU as/LLVM integrated assembler.
This avoids canonical PLT entries (st_shndx=0, st_value!=0).

On i386, there are 2 types of PLTs, PIC and non-PIC. Currently,
the GCC/GNU as convention is to use R_386_PC32 for non-PIC PLT and
R_386_PLT32 for PIC PLT. Copy relocations/canonical PLT entries
are possible ABI issues but GCC/GNU as will likely keep the status
quo because (1) the ABI is legacy (2) the change will drop a GNU
ld diagnostic for non-default visibility ifunc in shared objects.

clang-12 -fno-pic (since [1]) can emit R_386_PLT32 for compiler
generated function declarations, because preventing canonical PLT
entries is weighed over the rare ifunc diagnostic.

Further info for the more interested:

  ClangBuiltLinux/linux#1210
  https://sourceware.org/bugzilla/show_bug.cgi?id=27169
  llvm/llvm-project@a084c03 [1]

 [ bp: Massage commit message. ]

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Fangrui Song <maskray@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Link: https://lkml.kernel.org/r/20210127205600.1227437-1-maskray@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
ev-gerrit pushed a commit to Evervolv/android_kernel_moto_sdm632 that referenced this issue Nov 3, 2022
[ Upstream commit bb73d07148c405c293e576b40af37737faf23a6a ]

This is similar to commit

  b21ebf2fb4cd ("x86: Treat R_X86_64_PLT32 as R_X86_64_PC32")

but for i386. As far as the kernel is concerned, R_386_PLT32 can be
treated the same as R_386_PC32.

R_386_PLT32/R_X86_64_PLT32 are PC-relative relocation types which
can only be used by branches. If the referenced symbol is defined
externally, a PLT will be used.

R_386_PC32/R_X86_64_PC32 are PC-relative relocation types which can be
used by address taking operations and branches. If the referenced symbol
is defined externally, a copy relocation/canonical PLT entry will be
created in the executable.

On x86-64, there is no PIC vs non-PIC PLT distinction and an
R_X86_64_PLT32 relocation is produced for both `call/jmp foo` and
`call/jmp foo@PLT` with newer (2018) GNU as/LLVM integrated assembler.
This avoids canonical PLT entries (st_shndx=0, st_value!=0).

On i386, there are 2 types of PLTs, PIC and non-PIC. Currently,
the GCC/GNU as convention is to use R_386_PC32 for non-PIC PLT and
R_386_PLT32 for PIC PLT. Copy relocations/canonical PLT entries
are possible ABI issues but GCC/GNU as will likely keep the status
quo because (1) the ABI is legacy (2) the change will drop a GNU
ld diagnostic for non-default visibility ifunc in shared objects.

clang-12 -fno-pic (since [1]) can emit R_386_PLT32 for compiler
generated function declarations, because preventing canonical PLT
entries is weighed over the rare ifunc diagnostic.

Further info for the more interested:

  ClangBuiltLinux/linux#1210
  https://sourceware.org/bugzilla/show_bug.cgi?id=27169
  llvm/llvm-project@a084c03 [1]

 [ bp: Massage commit message. ]

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Fangrui Song <maskray@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Link: https://lkml.kernel.org/r/20210127205600.1227437-1-maskray@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
iqba78 pushed a commit to iqba78/android_kernel_xiaomi_sdm660_southwest that referenced this issue Dec 17, 2022
[ Upstream commit bb73d07148c405c293e576b40af37737faf23a6a ]

This is similar to commit

  b21ebf2fb4cd ("x86: Treat R_X86_64_PLT32 as R_X86_64_PC32")

but for i386. As far as the kernel is concerned, R_386_PLT32 can be
treated the same as R_386_PC32.

R_386_PLT32/R_X86_64_PLT32 are PC-relative relocation types which
can only be used by branches. If the referenced symbol is defined
externally, a PLT will be used.

R_386_PC32/R_X86_64_PC32 are PC-relative relocation types which can be
used by address taking operations and branches. If the referenced symbol
is defined externally, a copy relocation/canonical PLT entry will be
created in the executable.

On x86-64, there is no PIC vs non-PIC PLT distinction and an
R_X86_64_PLT32 relocation is produced for both `call/jmp foo` and
`call/jmp foo@PLT` with newer (2018) GNU as/LLVM integrated assembler.
This avoids canonical PLT entries (st_shndx=0, st_value!=0).

On i386, there are 2 types of PLTs, PIC and non-PIC. Currently,
the GCC/GNU as convention is to use R_386_PC32 for non-PIC PLT and
R_386_PLT32 for PIC PLT. Copy relocations/canonical PLT entries
are possible ABI issues but GCC/GNU as will likely keep the status
quo because (1) the ABI is legacy (2) the change will drop a GNU
ld diagnostic for non-default visibility ifunc in shared objects.

clang-12 -fno-pic (since [1]) can emit R_386_PLT32 for compiler
generated function declarations, because preventing canonical PLT
entries is weighed over the rare ifunc diagnostic.

Further info for the more interested:

  ClangBuiltLinux/linux#1210
  https://sourceware.org/bugzilla/show_bug.cgi?id=27169
  llvm/llvm-project@a084c03 [1]

 [ bp: Massage commit message. ]

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Fangrui Song <maskray@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Link: https://lkml.kernel.org/r/20210127205600.1227437-1-maskray@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
Blackmanx pushed a commit to Blackmanx/bigshot_kernel_realme_sm8250 that referenced this issue Dec 19, 2022
[ Upstream commit bb73d07148c405c293e576b40af37737faf23a6a ]

This is similar to commit

  b21ebf2 ("x86: Treat R_X86_64_PLT32 as R_X86_64_PC32")

but for i386. As far as the kernel is concerned, R_386_PLT32 can be
treated the same as R_386_PC32.

R_386_PLT32/R_X86_64_PLT32 are PC-relative relocation types which
can only be used by branches. If the referenced symbol is defined
externally, a PLT will be used.

R_386_PC32/R_X86_64_PC32 are PC-relative relocation types which can be
used by address taking operations and branches. If the referenced symbol
is defined externally, a copy relocation/canonical PLT entry will be
created in the executable.

On x86-64, there is no PIC vs non-PIC PLT distinction and an
R_X86_64_PLT32 relocation is produced for both `call/jmp foo` and
`call/jmp foo@PLT` with newer (2018) GNU as/LLVM integrated assembler.
This avoids canonical PLT entries (st_shndx=0, st_value!=0).

On i386, there are 2 types of PLTs, PIC and non-PIC. Currently,
the GCC/GNU as convention is to use R_386_PC32 for non-PIC PLT and
R_386_PLT32 for PIC PLT. Copy relocations/canonical PLT entries
are possible ABI issues but GCC/GNU as will likely keep the status
quo because (1) the ABI is legacy (2) the change will drop a GNU
ld diagnostic for non-default visibility ifunc in shared objects.

clang-12 -fno-pic (since [1]) can emit R_386_PLT32 for compiler
generated function declarations, because preventing canonical PLT
entries is weighed over the rare ifunc diagnostic.

Further info for the more interested:

  ClangBuiltLinux/linux#1210
  https://sourceware.org/bugzilla/show_bug.cgi?id=27169
  llvm/llvm-project@a084c03 [1]

 [ bp: Massage commit message. ]

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Fangrui Song <maskray@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Link: https://lkml.kernel.org/r/20210127205600.1227437-1-maskray@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
much-doge pushed a commit to much-doge/Quantum_Quackery that referenced this issue Dec 26, 2022
[ Upstream commit bb73d07148c405c293e576b40af37737faf23a6a ]

This is similar to commit

  b21ebf2fb4cd ("x86: Treat R_X86_64_PLT32 as R_X86_64_PC32")

but for i386. As far as the kernel is concerned, R_386_PLT32 can be
treated the same as R_386_PC32.

R_386_PLT32/R_X86_64_PLT32 are PC-relative relocation types which
can only be used by branches. If the referenced symbol is defined
externally, a PLT will be used.

R_386_PC32/R_X86_64_PC32 are PC-relative relocation types which can be
used by address taking operations and branches. If the referenced symbol
is defined externally, a copy relocation/canonical PLT entry will be
created in the executable.

On x86-64, there is no PIC vs non-PIC PLT distinction and an
R_X86_64_PLT32 relocation is produced for both `call/jmp foo` and
`call/jmp foo@PLT` with newer (2018) GNU as/LLVM integrated assembler.
This avoids canonical PLT entries (st_shndx=0, st_value!=0).

On i386, there are 2 types of PLTs, PIC and non-PIC. Currently,
the GCC/GNU as convention is to use R_386_PC32 for non-PIC PLT and
R_386_PLT32 for PIC PLT. Copy relocations/canonical PLT entries
are possible ABI issues but GCC/GNU as will likely keep the status
quo because (1) the ABI is legacy (2) the change will drop a GNU
ld diagnostic for non-default visibility ifunc in shared objects.

clang-12 -fno-pic (since [1]) can emit R_386_PLT32 for compiler
generated function declarations, because preventing canonical PLT
entries is weighed over the rare ifunc diagnostic.

Further info for the more interested:

  ClangBuiltLinux/linux#1210
  https://sourceware.org/bugzilla/show_bug.cgi?id=27169
  llvm/llvm-project@a084c03 [1]

 [ bp: Massage commit message. ]

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Fangrui Song <maskray@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Link: https://lkml.kernel.org/r/20210127205600.1227437-1-maskray@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
blueseaxy pushed a commit to blueseaxy/android_kernel_xiaomi_garden that referenced this issue Jan 8, 2023
[ Upstream commit bb73d07148c405c293e576b40af37737faf23a6a ]

This is similar to commit

  b21ebf2fb4cd ("x86: Treat R_X86_64_PLT32 as R_X86_64_PC32")

but for i386. As far as the kernel is concerned, R_386_PLT32 can be
treated the same as R_386_PC32.

R_386_PLT32/R_X86_64_PLT32 are PC-relative relocation types which
can only be used by branches. If the referenced symbol is defined
externally, a PLT will be used.

R_386_PC32/R_X86_64_PC32 are PC-relative relocation types which can be
used by address taking operations and branches. If the referenced symbol
is defined externally, a copy relocation/canonical PLT entry will be
created in the executable.

On x86-64, there is no PIC vs non-PIC PLT distinction and an
R_X86_64_PLT32 relocation is produced for both `call/jmp foo` and
`call/jmp foo@PLT` with newer (2018) GNU as/LLVM integrated assembler.
This avoids canonical PLT entries (st_shndx=0, st_value!=0).

On i386, there are 2 types of PLTs, PIC and non-PIC. Currently,
the GCC/GNU as convention is to use R_386_PC32 for non-PIC PLT and
R_386_PLT32 for PIC PLT. Copy relocations/canonical PLT entries
are possible ABI issues but GCC/GNU as will likely keep the status
quo because (1) the ABI is legacy (2) the change will drop a GNU
ld diagnostic for non-default visibility ifunc in shared objects.

clang-12 -fno-pic (since [1]) can emit R_386_PLT32 for compiler
generated function declarations, because preventing canonical PLT
entries is weighed over the rare ifunc diagnostic.

Further info for the more interested:

  ClangBuiltLinux/linux#1210
  https://sourceware.org/bugzilla/show_bug.cgi?id=27169
  llvm/llvm-project@a084c03 [1]

 [ bp: Massage commit message. ]

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Fangrui Song <maskray@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Link: https://lkml.kernel.org/r/20210127205600.1227437-1-maskray@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
bggRGjQaUbCoE pushed a commit to bggRGjQaUbCoE/android_kernel_samsung_sm8250-mohammad92 that referenced this issue Apr 6, 2023
[ Upstream commit bb73d07148c405c293e576b40af37737faf23a6a ]

This is similar to commit

  b21ebf2 ("x86: Treat R_X86_64_PLT32 as R_X86_64_PC32")

but for i386. As far as the kernel is concerned, R_386_PLT32 can be
treated the same as R_386_PC32.

R_386_PLT32/R_X86_64_PLT32 are PC-relative relocation types which
can only be used by branches. If the referenced symbol is defined
externally, a PLT will be used.

R_386_PC32/R_X86_64_PC32 are PC-relative relocation types which can be
used by address taking operations and branches. If the referenced symbol
is defined externally, a copy relocation/canonical PLT entry will be
created in the executable.

On x86-64, there is no PIC vs non-PIC PLT distinction and an
R_X86_64_PLT32 relocation is produced for both `call/jmp foo` and
`call/jmp foo@PLT` with newer (2018) GNU as/LLVM integrated assembler.
This avoids canonical PLT entries (st_shndx=0, st_value!=0).

On i386, there are 2 types of PLTs, PIC and non-PIC. Currently,
the GCC/GNU as convention is to use R_386_PC32 for non-PIC PLT and
R_386_PLT32 for PIC PLT. Copy relocations/canonical PLT entries
are possible ABI issues but GCC/GNU as will likely keep the status
quo because (1) the ABI is legacy (2) the change will drop a GNU
ld diagnostic for non-default visibility ifunc in shared objects.

clang-12 -fno-pic (since [1]) can emit R_386_PLT32 for compiler
generated function declarations, because preventing canonical PLT
entries is weighed over the rare ifunc diagnostic.

Further info for the more interested:

  ClangBuiltLinux/linux#1210
  https://sourceware.org/bugzilla/show_bug.cgi?id=27169
  llvm/llvm-project@a084c03 [1]

 [ bp: Massage commit message. ]

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Fangrui Song <maskray@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Link: https://lkml.kernel.org/r/20210127205600.1227437-1-maskray@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
bggRGjQaUbCoE pushed a commit to bggRGjQaUbCoE/android_kernel_samsung_sm8250-mohammad92 that referenced this issue Apr 6, 2023
[ Upstream commit bb73d07148c405c293e576b40af37737faf23a6a ]

This is similar to commit

  b21ebf2 ("x86: Treat R_X86_64_PLT32 as R_X86_64_PC32")

but for i386. As far as the kernel is concerned, R_386_PLT32 can be
treated the same as R_386_PC32.

R_386_PLT32/R_X86_64_PLT32 are PC-relative relocation types which
can only be used by branches. If the referenced symbol is defined
externally, a PLT will be used.

R_386_PC32/R_X86_64_PC32 are PC-relative relocation types which can be
used by address taking operations and branches. If the referenced symbol
is defined externally, a copy relocation/canonical PLT entry will be
created in the executable.

On x86-64, there is no PIC vs non-PIC PLT distinction and an
R_X86_64_PLT32 relocation is produced for both `call/jmp foo` and
`call/jmp foo@PLT` with newer (2018) GNU as/LLVM integrated assembler.
This avoids canonical PLT entries (st_shndx=0, st_value!=0).

On i386, there are 2 types of PLTs, PIC and non-PIC. Currently,
the GCC/GNU as convention is to use R_386_PC32 for non-PIC PLT and
R_386_PLT32 for PIC PLT. Copy relocations/canonical PLT entries
are possible ABI issues but GCC/GNU as will likely keep the status
quo because (1) the ABI is legacy (2) the change will drop a GNU
ld diagnostic for non-default visibility ifunc in shared objects.

clang-12 -fno-pic (since [1]) can emit R_386_PLT32 for compiler
generated function declarations, because preventing canonical PLT
entries is weighed over the rare ifunc diagnostic.

Further info for the more interested:

  ClangBuiltLinux/linux#1210
  https://sourceware.org/bugzilla/show_bug.cgi?id=27169
  llvm/llvm-project@a084c03 [1]

 [ bp: Massage commit message. ]

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Fangrui Song <maskray@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Link: https://lkml.kernel.org/r/20210127205600.1227437-1-maskray@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
Rem01Gaming pushed a commit to Rem01Gaming/liquid_kernel_realme_even that referenced this issue May 18, 2023
[ Upstream commit bb73d07148c405c293e576b40af37737faf23a6a ]

This is similar to commit

  b21ebf2fb4cd ("x86: Treat R_X86_64_PLT32 as R_X86_64_PC32")

but for i386. As far as the kernel is concerned, R_386_PLT32 can be
treated the same as R_386_PC32.

R_386_PLT32/R_X86_64_PLT32 are PC-relative relocation types which
can only be used by branches. If the referenced symbol is defined
externally, a PLT will be used.

R_386_PC32/R_X86_64_PC32 are PC-relative relocation types which can be
used by address taking operations and branches. If the referenced symbol
is defined externally, a copy relocation/canonical PLT entry will be
created in the executable.

On x86-64, there is no PIC vs non-PIC PLT distinction and an
R_X86_64_PLT32 relocation is produced for both `call/jmp foo` and
`call/jmp foo@PLT` with newer (2018) GNU as/LLVM integrated assembler.
This avoids canonical PLT entries (st_shndx=0, st_value!=0).

On i386, there are 2 types of PLTs, PIC and non-PIC. Currently,
the GCC/GNU as convention is to use R_386_PC32 for non-PIC PLT and
R_386_PLT32 for PIC PLT. Copy relocations/canonical PLT entries
are possible ABI issues but GCC/GNU as will likely keep the status
quo because (1) the ABI is legacy (2) the change will drop a GNU
ld diagnostic for non-default visibility ifunc in shared objects.

clang-12 -fno-pic (since [1]) can emit R_386_PLT32 for compiler
generated function declarations, because preventing canonical PLT
entries is weighed over the rare ifunc diagnostic.

Further info for the more interested:

  ClangBuiltLinux/linux#1210
  https://sourceware.org/bugzilla/show_bug.cgi?id=27169
  llvm/llvm-project@a084c03 [1]

 [ bp: Massage commit message. ]

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Fangrui Song <maskray@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Link: https://lkml.kernel.org/r/20210127205600.1227437-1-maskray@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
Rem01Gaming pushed a commit to Rem01Gaming/viviz_kernel_even that referenced this issue Jun 20, 2023
[ Upstream commit bb73d07148c405c293e576b40af37737faf23a6a ]

This is similar to commit

  b21ebf2fb4cd ("x86: Treat R_X86_64_PLT32 as R_X86_64_PC32")

but for i386. As far as the kernel is concerned, R_386_PLT32 can be
treated the same as R_386_PC32.

R_386_PLT32/R_X86_64_PLT32 are PC-relative relocation types which
can only be used by branches. If the referenced symbol is defined
externally, a PLT will be used.

R_386_PC32/R_X86_64_PC32 are PC-relative relocation types which can be
used by address taking operations and branches. If the referenced symbol
is defined externally, a copy relocation/canonical PLT entry will be
created in the executable.

On x86-64, there is no PIC vs non-PIC PLT distinction and an
R_X86_64_PLT32 relocation is produced for both `call/jmp foo` and
`call/jmp foo@PLT` with newer (2018) GNU as/LLVM integrated assembler.
This avoids canonical PLT entries (st_shndx=0, st_value!=0).

On i386, there are 2 types of PLTs, PIC and non-PIC. Currently,
the GCC/GNU as convention is to use R_386_PC32 for non-PIC PLT and
R_386_PLT32 for PIC PLT. Copy relocations/canonical PLT entries
are possible ABI issues but GCC/GNU as will likely keep the status
quo because (1) the ABI is legacy (2) the change will drop a GNU
ld diagnostic for non-default visibility ifunc in shared objects.

clang-12 -fno-pic (since [1]) can emit R_386_PLT32 for compiler
generated function declarations, because preventing canonical PLT
entries is weighed over the rare ifunc diagnostic.

Further info for the more interested:

  ClangBuiltLinux/linux#1210
  https://sourceware.org/bugzilla/show_bug.cgi?id=27169
  llvm/llvm-project@a084c03 [1]

 [ bp: Massage commit message. ]

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Fangrui Song <maskray@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Link: https://lkml.kernel.org/r/20210127205600.1227437-1-maskray@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
ahnet-69 pushed a commit to ahnet-69/android_kernel_samsung_a32 that referenced this issue Jul 16, 2023
[ Upstream commit bb73d07148c405c293e576b40af37737faf23a6a ]

This is similar to commit

  b21ebf2fb4cd ("x86: Treat R_X86_64_PLT32 as R_X86_64_PC32")

but for i386. As far as the kernel is concerned, R_386_PLT32 can be
treated the same as R_386_PC32.

R_386_PLT32/R_X86_64_PLT32 are PC-relative relocation types which
can only be used by branches. If the referenced symbol is defined
externally, a PLT will be used.

R_386_PC32/R_X86_64_PC32 are PC-relative relocation types which can be
used by address taking operations and branches. If the referenced symbol
is defined externally, a copy relocation/canonical PLT entry will be
created in the executable.

On x86-64, there is no PIC vs non-PIC PLT distinction and an
R_X86_64_PLT32 relocation is produced for both `call/jmp foo` and
`call/jmp foo@PLT` with newer (2018) GNU as/LLVM integrated assembler.
This avoids canonical PLT entries (st_shndx=0, st_value!=0).

On i386, there are 2 types of PLTs, PIC and non-PIC. Currently,
the GCC/GNU as convention is to use R_386_PC32 for non-PIC PLT and
R_386_PLT32 for PIC PLT. Copy relocations/canonical PLT entries
are possible ABI issues but GCC/GNU as will likely keep the status
quo because (1) the ABI is legacy (2) the change will drop a GNU
ld diagnostic for non-default visibility ifunc in shared objects.

clang-12 -fno-pic (since [1]) can emit R_386_PLT32 for compiler
generated function declarations, because preventing canonical PLT
entries is weighed over the rare ifunc diagnostic.

Further info for the more interested:

  ClangBuiltLinux/linux#1210
  https://sourceware.org/bugzilla/show_bug.cgi?id=27169
  llvm/llvm-project@a084c03 [1]

 [ bp: Massage commit message. ]

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Fangrui Song <maskray@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Link: https://lkml.kernel.org/r/20210127205600.1227437-1-maskray@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
JoysKo pushed a commit to JoysKo/HYBRID_CAF_kernel that referenced this issue Jul 25, 2023
[ Upstream commit bb73d07148c405c293e576b40af37737faf23a6a ]

This is similar to commit

  b21ebf2fb4cd ("x86: Treat R_X86_64_PLT32 as R_X86_64_PC32")

but for i386. As far as the kernel is concerned, R_386_PLT32 can be
treated the same as R_386_PC32.

R_386_PLT32/R_X86_64_PLT32 are PC-relative relocation types which
can only be used by branches. If the referenced symbol is defined
externally, a PLT will be used.

R_386_PC32/R_X86_64_PC32 are PC-relative relocation types which can be
used by address taking operations and branches. If the referenced symbol
is defined externally, a copy relocation/canonical PLT entry will be
created in the executable.

On x86-64, there is no PIC vs non-PIC PLT distinction and an
R_X86_64_PLT32 relocation is produced for both `call/jmp foo` and
`call/jmp foo@PLT` with newer (2018) GNU as/LLVM integrated assembler.
This avoids canonical PLT entries (st_shndx=0, st_value!=0).

On i386, there are 2 types of PLTs, PIC and non-PIC. Currently,
the GCC/GNU as convention is to use R_386_PC32 for non-PIC PLT and
R_386_PLT32 for PIC PLT. Copy relocations/canonical PLT entries
are possible ABI issues but GCC/GNU as will likely keep the status
quo because (1) the ABI is legacy (2) the change will drop a GNU
ld diagnostic for non-default visibility ifunc in shared objects.

clang-12 -fno-pic (since [1]) can emit R_386_PLT32 for compiler
generated function declarations, because preventing canonical PLT
entries is weighed over the rare ifunc diagnostic.

Further info for the more interested:

  ClangBuiltLinux/linux#1210
  https://sourceware.org/bugzilla/show_bug.cgi?id=27169
  llvm/llvm-project@a084c03 [1]

 [ bp: Massage commit message. ]

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Fangrui Song <maskray@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Link: https://lkml.kernel.org/r/20210127205600.1227437-1-maskray@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
intersectRaven pushed a commit to intersectRaven/rk356x-kernel that referenced this issue Sep 14, 2023
[ Upstream commit bb73d07148c405c293e576b40af37737faf23a6a ]

This is similar to commit

  b21ebf2fb4cd ("x86: Treat R_X86_64_PLT32 as R_X86_64_PC32")

but for i386. As far as the kernel is concerned, R_386_PLT32 can be
treated the same as R_386_PC32.

R_386_PLT32/R_X86_64_PLT32 are PC-relative relocation types which
can only be used by branches. If the referenced symbol is defined
externally, a PLT will be used.

R_386_PC32/R_X86_64_PC32 are PC-relative relocation types which can be
used by address taking operations and branches. If the referenced symbol
is defined externally, a copy relocation/canonical PLT entry will be
created in the executable.

On x86-64, there is no PIC vs non-PIC PLT distinction and an
R_X86_64_PLT32 relocation is produced for both `call/jmp foo` and
`call/jmp foo@PLT` with newer (2018) GNU as/LLVM integrated assembler.
This avoids canonical PLT entries (st_shndx=0, st_value!=0).

On i386, there are 2 types of PLTs, PIC and non-PIC. Currently,
the GCC/GNU as convention is to use R_386_PC32 for non-PIC PLT and
R_386_PLT32 for PIC PLT. Copy relocations/canonical PLT entries
are possible ABI issues but GCC/GNU as will likely keep the status
quo because (1) the ABI is legacy (2) the change will drop a GNU
ld diagnostic for non-default visibility ifunc in shared objects.

clang-12 -fno-pic (since [1]) can emit R_386_PLT32 for compiler
generated function declarations, because preventing canonical PLT
entries is weighed over the rare ifunc diagnostic.

Further info for the more interested:

  ClangBuiltLinux/linux#1210
  https://sourceware.org/bugzilla/show_bug.cgi?id=27169
  llvm/llvm-project@a084c03 [1]

 [ bp: Massage commit message. ]

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Fangrui Song <maskray@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Link: https://lkml.kernel.org/r/20210127205600.1227437-1-maskray@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
mylove90 pushed a commit to mylove90/android_kernel_xiaomi_ginkgo that referenced this issue Nov 4, 2023
[ Upstream commit bb73d07148c405c293e576b40af37737faf23a6a ]

This is similar to commit

  b21ebf2fb4cd ("x86: Treat R_X86_64_PLT32 as R_X86_64_PC32")

but for i386. As far as the kernel is concerned, R_386_PLT32 can be
treated the same as R_386_PC32.

R_386_PLT32/R_X86_64_PLT32 are PC-relative relocation types which
can only be used by branches. If the referenced symbol is defined
externally, a PLT will be used.

R_386_PC32/R_X86_64_PC32 are PC-relative relocation types which can be
used by address taking operations and branches. If the referenced symbol
is defined externally, a copy relocation/canonical PLT entry will be
created in the executable.

On x86-64, there is no PIC vs non-PIC PLT distinction and an
R_X86_64_PLT32 relocation is produced for both `call/jmp foo` and
`call/jmp foo@PLT` with newer (2018) GNU as/LLVM integrated assembler.
This avoids canonical PLT entries (st_shndx=0, st_value!=0).

On i386, there are 2 types of PLTs, PIC and non-PIC. Currently,
the GCC/GNU as convention is to use R_386_PC32 for non-PIC PLT and
R_386_PLT32 for PIC PLT. Copy relocations/canonical PLT entries
are possible ABI issues but GCC/GNU as will likely keep the status
quo because (1) the ABI is legacy (2) the change will drop a GNU
ld diagnostic for non-default visibility ifunc in shared objects.

clang-12 -fno-pic (since [1]) can emit R_386_PLT32 for compiler
generated function declarations, because preventing canonical PLT
entries is weighed over the rare ifunc diagnostic.

Further info for the more interested:

  ClangBuiltLinux/linux#1210
  https://sourceware.org/bugzilla/show_bug.cgi?id=27169
  llvm/llvm-project@a084c03 [1]

 [ bp: Massage commit message. ]

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Fangrui Song <maskray@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Link: https://lkml.kernel.org/r/20210127205600.1227437-1-maskray@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
ratatouille100 pushed a commit to ratatouille100/kernel_samsung_universal9611 that referenced this issue Dec 17, 2023
[ Upstream commit bb73d07148c405c293e576b40af37737faf23a6a ]

This is similar to commit

  b21ebf2fb4cd ("x86: Treat R_X86_64_PLT32 as R_X86_64_PC32")

but for i386. As far as the kernel is concerned, R_386_PLT32 can be
treated the same as R_386_PC32.

R_386_PLT32/R_X86_64_PLT32 are PC-relative relocation types which
can only be used by branches. If the referenced symbol is defined
externally, a PLT will be used.

R_386_PC32/R_X86_64_PC32 are PC-relative relocation types which can be
used by address taking operations and branches. If the referenced symbol
is defined externally, a copy relocation/canonical PLT entry will be
created in the executable.

On x86-64, there is no PIC vs non-PIC PLT distinction and an
R_X86_64_PLT32 relocation is produced for both `call/jmp foo` and
`call/jmp foo@PLT` with newer (2018) GNU as/LLVM integrated assembler.
This avoids canonical PLT entries (st_shndx=0, st_value!=0).

On i386, there are 2 types of PLTs, PIC and non-PIC. Currently,
the GCC/GNU as convention is to use R_386_PC32 for non-PIC PLT and
R_386_PLT32 for PIC PLT. Copy relocations/canonical PLT entries
are possible ABI issues but GCC/GNU as will likely keep the status
quo because (1) the ABI is legacy (2) the change will drop a GNU
ld diagnostic for non-default visibility ifunc in shared objects.

clang-12 -fno-pic (since [1]) can emit R_386_PLT32 for compiler
generated function declarations, because preventing canonical PLT
entries is weighed over the rare ifunc diagnostic.

Further info for the more interested:

  ClangBuiltLinux/linux#1210
  https://sourceware.org/bugzilla/show_bug.cgi?id=27169
  llvm/llvm-project@a084c03 [1]

 [ bp: Massage commit message. ]

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Fangrui Song <maskray@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Link: https://lkml.kernel.org/r/20210127205600.1227437-1-maskray@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
Shas45558 pushed a commit to Shas45558/shas-dream-oc-mt6768 that referenced this issue Dec 27, 2023
[ Upstream commit bb73d07148c405c293e576b40af37737faf23a6a ]

This is similar to commit

  b21ebf2fb4cd ("x86: Treat R_X86_64_PLT32 as R_X86_64_PC32")

but for i386. As far as the kernel is concerned, R_386_PLT32 can be
treated the same as R_386_PC32.

R_386_PLT32/R_X86_64_PLT32 are PC-relative relocation types which
can only be used by branches. If the referenced symbol is defined
externally, a PLT will be used.

R_386_PC32/R_X86_64_PC32 are PC-relative relocation types which can be
used by address taking operations and branches. If the referenced symbol
is defined externally, a copy relocation/canonical PLT entry will be
created in the executable.

On x86-64, there is no PIC vs non-PIC PLT distinction and an
R_X86_64_PLT32 relocation is produced for both `call/jmp foo` and
`call/jmp foo@PLT` with newer (2018) GNU as/LLVM integrated assembler.
This avoids canonical PLT entries (st_shndx=0, st_value!=0).

On i386, there are 2 types of PLTs, PIC and non-PIC. Currently,
the GCC/GNU as convention is to use R_386_PC32 for non-PIC PLT and
R_386_PLT32 for PIC PLT. Copy relocations/canonical PLT entries
are possible ABI issues but GCC/GNU as will likely keep the status
quo because (1) the ABI is legacy (2) the change will drop a GNU
ld diagnostic for non-default visibility ifunc in shared objects.

clang-12 -fno-pic (since [1]) can emit R_386_PLT32 for compiler
generated function declarations, because preventing canonical PLT
entries is weighed over the rare ifunc diagnostic.

Further info for the more interested:

  ClangBuiltLinux/linux#1210
  https://sourceware.org/bugzilla/show_bug.cgi?id=27169
  llvm/llvm-project@a084c03 [1]

 [ bp: Massage commit message. ]

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Fangrui Song <maskray@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Link: https://lkml.kernel.org/r/20210127205600.1227437-1-maskray@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
Bakoubak pushed a commit to Bakoubak/old-android_kernel_lenovo_amar that referenced this issue Jan 23, 2024
[ Upstream commit bb73d07148c405c293e576b40af37737faf23a6a ]

This is similar to commit

  b21ebf2fb4cd ("x86: Treat R_X86_64_PLT32 as R_X86_64_PC32")

but for i386. As far as the kernel is concerned, R_386_PLT32 can be
treated the same as R_386_PC32.

R_386_PLT32/R_X86_64_PLT32 are PC-relative relocation types which
can only be used by branches. If the referenced symbol is defined
externally, a PLT will be used.

R_386_PC32/R_X86_64_PC32 are PC-relative relocation types which can be
used by address taking operations and branches. If the referenced symbol
is defined externally, a copy relocation/canonical PLT entry will be
created in the executable.

On x86-64, there is no PIC vs non-PIC PLT distinction and an
R_X86_64_PLT32 relocation is produced for both `call/jmp foo` and
`call/jmp foo@PLT` with newer (2018) GNU as/LLVM integrated assembler.
This avoids canonical PLT entries (st_shndx=0, st_value!=0).

On i386, there are 2 types of PLTs, PIC and non-PIC. Currently,
the GCC/GNU as convention is to use R_386_PC32 for non-PIC PLT and
R_386_PLT32 for PIC PLT. Copy relocations/canonical PLT entries
are possible ABI issues but GCC/GNU as will likely keep the status
quo because (1) the ABI is legacy (2) the change will drop a GNU
ld diagnostic for non-default visibility ifunc in shared objects.

clang-12 -fno-pic (since [1]) can emit R_386_PLT32 for compiler
generated function declarations, because preventing canonical PLT
entries is weighed over the rare ifunc diagnostic.

Further info for the more interested:

  ClangBuiltLinux/linux#1210
  https://sourceware.org/bugzilla/show_bug.cgi?id=27169
  llvm/llvm-project@a084c03 [1]

 [ bp: Massage commit message. ]

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Fangrui Song <maskray@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Link: https://lkml.kernel.org/r/20210127205600.1227437-1-maskray@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
kevios12 pushed a commit to kevios12/android_kernel_samsung_universal7885 that referenced this issue Feb 16, 2024
[ Upstream commit bb73d07148c405c293e576b40af37737faf23a6a ]

This is similar to commit

  b21ebf2fb4cd ("x86: Treat R_X86_64_PLT32 as R_X86_64_PC32")

but for i386. As far as the kernel is concerned, R_386_PLT32 can be
treated the same as R_386_PC32.

R_386_PLT32/R_X86_64_PLT32 are PC-relative relocation types which
can only be used by branches. If the referenced symbol is defined
externally, a PLT will be used.

R_386_PC32/R_X86_64_PC32 are PC-relative relocation types which can be
used by address taking operations and branches. If the referenced symbol
is defined externally, a copy relocation/canonical PLT entry will be
created in the executable.

On x86-64, there is no PIC vs non-PIC PLT distinction and an
R_X86_64_PLT32 relocation is produced for both `call/jmp foo` and
`call/jmp foo@PLT` with newer (2018) GNU as/LLVM integrated assembler.
This avoids canonical PLT entries (st_shndx=0, st_value!=0).

On i386, there are 2 types of PLTs, PIC and non-PIC. Currently,
the GCC/GNU as convention is to use R_386_PC32 for non-PIC PLT and
R_386_PLT32 for PIC PLT. Copy relocations/canonical PLT entries
are possible ABI issues but GCC/GNU as will likely keep the status
quo because (1) the ABI is legacy (2) the change will drop a GNU
ld diagnostic for non-default visibility ifunc in shared objects.

clang-12 -fno-pic (since [1]) can emit R_386_PLT32 for compiler
generated function declarations, because preventing canonical PLT
entries is weighed over the rare ifunc diagnostic.

Further info for the more interested:

  ClangBuiltLinux/linux#1210
  https://sourceware.org/bugzilla/show_bug.cgi?id=27169
  llvm/llvm-project@a084c03 [1]

 [ bp: Massage commit message. ]

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Fangrui Song <maskray@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Link: https://lkml.kernel.org/r/20210127205600.1227437-1-maskray@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
FlorinelulX pushed a commit to FlorinelulX/android_kernel_huawei_hi6250-8 that referenced this issue Feb 20, 2024
[ Upstream commit bb73d07148c405c293e576b40af37737faf23a6a ]

This is similar to commit

  b21ebf2fb4cd ("x86: Treat R_X86_64_PLT32 as R_X86_64_PC32")

but for i386. As far as the kernel is concerned, R_386_PLT32 can be
treated the same as R_386_PC32.

R_386_PLT32/R_X86_64_PLT32 are PC-relative relocation types which
can only be used by branches. If the referenced symbol is defined
externally, a PLT will be used.

R_386_PC32/R_X86_64_PC32 are PC-relative relocation types which can be
used by address taking operations and branches. If the referenced symbol
is defined externally, a copy relocation/canonical PLT entry will be
created in the executable.

On x86-64, there is no PIC vs non-PIC PLT distinction and an
R_X86_64_PLT32 relocation is produced for both `call/jmp foo` and
`call/jmp foo@PLT` with newer (2018) GNU as/LLVM integrated assembler.
This avoids canonical PLT entries (st_shndx=0, st_value!=0).

On i386, there are 2 types of PLTs, PIC and non-PIC. Currently,
the GCC/GNU as convention is to use R_386_PC32 for non-PIC PLT and
R_386_PLT32 for PIC PLT. Copy relocations/canonical PLT entries
are possible ABI issues but GCC/GNU as will likely keep the status
quo because (1) the ABI is legacy (2) the change will drop a GNU
ld diagnostic for non-default visibility ifunc in shared objects.

clang-12 -fno-pic (since [1]) can emit R_386_PLT32 for compiler
generated function declarations, because preventing canonical PLT
entries is weighed over the rare ifunc diagnostic.

Further info for the more interested:

  ClangBuiltLinux/linux#1210
  https://sourceware.org/bugzilla/show_bug.cgi?id=27169
  llvm/llvm-project@a084c03 [1]

 [ bp: Massage commit message. ]

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Fangrui Song <maskray@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Link: https://lkml.kernel.org/r/20210127205600.1227437-1-maskray@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
kevios12 pushed a commit to kevios12/android_kernel_samsung_universal7885 that referenced this issue Feb 24, 2024
[ Upstream commit bb73d07148c405c293e576b40af37737faf23a6a ]

This is similar to commit

  b21ebf2fb4cd ("x86: Treat R_X86_64_PLT32 as R_X86_64_PC32")

but for i386. As far as the kernel is concerned, R_386_PLT32 can be
treated the same as R_386_PC32.

R_386_PLT32/R_X86_64_PLT32 are PC-relative relocation types which
can only be used by branches. If the referenced symbol is defined
externally, a PLT will be used.

R_386_PC32/R_X86_64_PC32 are PC-relative relocation types which can be
used by address taking operations and branches. If the referenced symbol
is defined externally, a copy relocation/canonical PLT entry will be
created in the executable.

On x86-64, there is no PIC vs non-PIC PLT distinction and an
R_X86_64_PLT32 relocation is produced for both `call/jmp foo` and
`call/jmp foo@PLT` with newer (2018) GNU as/LLVM integrated assembler.
This avoids canonical PLT entries (st_shndx=0, st_value!=0).

On i386, there are 2 types of PLTs, PIC and non-PIC. Currently,
the GCC/GNU as convention is to use R_386_PC32 for non-PIC PLT and
R_386_PLT32 for PIC PLT. Copy relocations/canonical PLT entries
are possible ABI issues but GCC/GNU as will likely keep the status
quo because (1) the ABI is legacy (2) the change will drop a GNU
ld diagnostic for non-default visibility ifunc in shared objects.

clang-12 -fno-pic (since [1]) can emit R_386_PLT32 for compiler
generated function declarations, because preventing canonical PLT
entries is weighed over the rare ifunc diagnostic.

Further info for the more interested:

  ClangBuiltLinux/linux#1210
  https://sourceware.org/bugzilla/show_bug.cgi?id=27169
  llvm/llvm-project@a084c03 [1]

 [ bp: Massage commit message. ]

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Fangrui Song <maskray@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Link: https://lkml.kernel.org/r/20210127205600.1227437-1-maskray@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
Notganesh pushed a commit to Notganesh/kernel_oneplus_ivan-R that referenced this issue Mar 21, 2024
[ Upstream commit bb73d07148c405c293e576b40af37737faf23a6a ]

This is similar to commit

  b21ebf2fb4cd ("x86: Treat R_X86_64_PLT32 as R_X86_64_PC32")

but for i386. As far as the kernel is concerned, R_386_PLT32 can be
treated the same as R_386_PC32.

R_386_PLT32/R_X86_64_PLT32 are PC-relative relocation types which
can only be used by branches. If the referenced symbol is defined
externally, a PLT will be used.

R_386_PC32/R_X86_64_PC32 are PC-relative relocation types which can be
used by address taking operations and branches. If the referenced symbol
is defined externally, a copy relocation/canonical PLT entry will be
created in the executable.

On x86-64, there is no PIC vs non-PIC PLT distinction and an
R_X86_64_PLT32 relocation is produced for both `call/jmp foo` and
`call/jmp foo@PLT` with newer (2018) GNU as/LLVM integrated assembler.
This avoids canonical PLT entries (st_shndx=0, st_value!=0).

On i386, there are 2 types of PLTs, PIC and non-PIC. Currently,
the GCC/GNU as convention is to use R_386_PC32 for non-PIC PLT and
R_386_PLT32 for PIC PLT. Copy relocations/canonical PLT entries
are possible ABI issues but GCC/GNU as will likely keep the status
quo because (1) the ABI is legacy (2) the change will drop a GNU
ld diagnostic for non-default visibility ifunc in shared objects.

clang-12 -fno-pic (since [1]) can emit R_386_PLT32 for compiler
generated function declarations, because preventing canonical PLT
entries is weighed over the rare ifunc diagnostic.

Further info for the more interested:

  ClangBuiltLinux/linux#1210
  https://sourceware.org/bugzilla/show_bug.cgi?id=27169
  llvm/llvm-project@a084c03 [1]

 [ bp: Massage commit message. ]

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Fangrui Song <maskray@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Link: https://lkml.kernel.org/r/20210127205600.1227437-1-maskray@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
toraidl pushed a commit to toraidl/InfiniR_kernel_ucmi that referenced this issue Mar 29, 2024
[ Upstream commit bb73d07148c405c293e576b40af37737faf23a6a ]

This is similar to commit

  b21ebf2 ("x86: Treat R_X86_64_PLT32 as R_X86_64_PC32")

but for i386. As far as the kernel is concerned, R_386_PLT32 can be
treated the same as R_386_PC32.

R_386_PLT32/R_X86_64_PLT32 are PC-relative relocation types which
can only be used by branches. If the referenced symbol is defined
externally, a PLT will be used.

R_386_PC32/R_X86_64_PC32 are PC-relative relocation types which can be
used by address taking operations and branches. If the referenced symbol
is defined externally, a copy relocation/canonical PLT entry will be
created in the executable.

On x86-64, there is no PIC vs non-PIC PLT distinction and an
R_X86_64_PLT32 relocation is produced for both `call/jmp foo` and
`call/jmp foo@PLT` with newer (2018) GNU as/LLVM integrated assembler.
This avoids canonical PLT entries (st_shndx=0, st_value!=0).

On i386, there are 2 types of PLTs, PIC and non-PIC. Currently,
the GCC/GNU as convention is to use R_386_PC32 for non-PIC PLT and
R_386_PLT32 for PIC PLT. Copy relocations/canonical PLT entries
are possible ABI issues but GCC/GNU as will likely keep the status
quo because (1) the ABI is legacy (2) the change will drop a GNU
ld diagnostic for non-default visibility ifunc in shared objects.

clang-12 -fno-pic (since [1]) can emit R_386_PLT32 for compiler
generated function declarations, because preventing canonical PLT
entries is weighed over the rare ifunc diagnostic.

Further info for the more interested:

  ClangBuiltLinux/linux#1210
  https://sourceware.org/bugzilla/show_bug.cgi?id=27169
  llvm/llvm-project@a084c03 [1]

 [ bp: Massage commit message. ]

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Fangrui Song <maskray@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Link: https://lkml.kernel.org/r/20210127205600.1227437-1-maskray@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
rsuntk pushed a commit to rsuntk/a03_tmp that referenced this issue Mar 29, 2024
[ Upstream commit bb73d07148c405c293e576b40af37737faf23a6a ]

This is similar to commit

  b21ebf2 ("x86: Treat R_X86_64_PLT32 as R_X86_64_PC32")

but for i386. As far as the kernel is concerned, R_386_PLT32 can be
treated the same as R_386_PC32.

R_386_PLT32/R_X86_64_PLT32 are PC-relative relocation types which
can only be used by branches. If the referenced symbol is defined
externally, a PLT will be used.

R_386_PC32/R_X86_64_PC32 are PC-relative relocation types which can be
used by address taking operations and branches. If the referenced symbol
is defined externally, a copy relocation/canonical PLT entry will be
created in the executable.

On x86-64, there is no PIC vs non-PIC PLT distinction and an
R_X86_64_PLT32 relocation is produced for both `call/jmp foo` and
`call/jmp foo@PLT` with newer (2018) GNU as/LLVM integrated assembler.
This avoids canonical PLT entries (st_shndx=0, st_value!=0).

On i386, there are 2 types of PLTs, PIC and non-PIC. Currently,
the GCC/GNU as convention is to use R_386_PC32 for non-PIC PLT and
R_386_PLT32 for PIC PLT. Copy relocations/canonical PLT entries
are possible ABI issues but GCC/GNU as will likely keep the status
quo because (1) the ABI is legacy (2) the change will drop a GNU
ld diagnostic for non-default visibility ifunc in shared objects.

clang-12 -fno-pic (since [1]) can emit R_386_PLT32 for compiler
generated function declarations, because preventing canonical PLT
entries is weighed over the rare ifunc diagnostic.

Further info for the more interested:

  ClangBuiltLinux/linux#1210
  https://sourceware.org/bugzilla/show_bug.cgi?id=27169
  llvm/llvm-project@a084c03 [1]

 [ bp: Massage commit message. ]

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Fangrui Song <maskray@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Link: https://lkml.kernel.org/r/20210127205600.1227437-1-maskray@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
Meghthedev pushed a commit to sundrams-playground/kernel_samsung_m307f that referenced this issue Apr 5, 2024
[ Upstream commit bb73d07148c405c293e576b40af37737faf23a6a ]

This is similar to commit

  b21ebf2fb4cd ("x86: Treat R_X86_64_PLT32 as R_X86_64_PC32")

but for i386. As far as the kernel is concerned, R_386_PLT32 can be
treated the same as R_386_PC32.

R_386_PLT32/R_X86_64_PLT32 are PC-relative relocation types which
can only be used by branches. If the referenced symbol is defined
externally, a PLT will be used.

R_386_PC32/R_X86_64_PC32 are PC-relative relocation types which can be
used by address taking operations and branches. If the referenced symbol
is defined externally, a copy relocation/canonical PLT entry will be
created in the executable.

On x86-64, there is no PIC vs non-PIC PLT distinction and an
R_X86_64_PLT32 relocation is produced for both `call/jmp foo` and
`call/jmp foo@PLT` with newer (2018) GNU as/LLVM integrated assembler.
This avoids canonical PLT entries (st_shndx=0, st_value!=0).

On i386, there are 2 types of PLTs, PIC and non-PIC. Currently,
the GCC/GNU as convention is to use R_386_PC32 for non-PIC PLT and
R_386_PLT32 for PIC PLT. Copy relocations/canonical PLT entries
are possible ABI issues but GCC/GNU as will likely keep the status
quo because (1) the ABI is legacy (2) the change will drop a GNU
ld diagnostic for non-default visibility ifunc in shared objects.

clang-12 -fno-pic (since [1]) can emit R_386_PLT32 for compiler
generated function declarations, because preventing canonical PLT
entries is weighed over the rare ifunc diagnostic.

Further info for the more interested:

  ClangBuiltLinux/linux#1210
  https://sourceware.org/bugzilla/show_bug.cgi?id=27169
  llvm/llvm-project@a084c03 [1]

 [ bp: Massage commit message. ]

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Fangrui Song <maskray@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Link: https://lkml.kernel.org/r/20210127205600.1227437-1-maskray@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
Meghthedev pushed a commit to sundrams-playground/kernel_samsung_m307f that referenced this issue Apr 5, 2024
[ Upstream commit bb73d07148c405c293e576b40af37737faf23a6a ]

This is similar to commit

  b21ebf2fb4cd ("x86: Treat R_X86_64_PLT32 as R_X86_64_PC32")

but for i386. As far as the kernel is concerned, R_386_PLT32 can be
treated the same as R_386_PC32.

R_386_PLT32/R_X86_64_PLT32 are PC-relative relocation types which
can only be used by branches. If the referenced symbol is defined
externally, a PLT will be used.

R_386_PC32/R_X86_64_PC32 are PC-relative relocation types which can be
used by address taking operations and branches. If the referenced symbol
is defined externally, a copy relocation/canonical PLT entry will be
created in the executable.

On x86-64, there is no PIC vs non-PIC PLT distinction and an
R_X86_64_PLT32 relocation is produced for both `call/jmp foo` and
`call/jmp foo@PLT` with newer (2018) GNU as/LLVM integrated assembler.
This avoids canonical PLT entries (st_shndx=0, st_value!=0).

On i386, there are 2 types of PLTs, PIC and non-PIC. Currently,
the GCC/GNU as convention is to use R_386_PC32 for non-PIC PLT and
R_386_PLT32 for PIC PLT. Copy relocations/canonical PLT entries
are possible ABI issues but GCC/GNU as will likely keep the status
quo because (1) the ABI is legacy (2) the change will drop a GNU
ld diagnostic for non-default visibility ifunc in shared objects.

clang-12 -fno-pic (since [1]) can emit R_386_PLT32 for compiler
generated function declarations, because preventing canonical PLT
entries is weighed over the rare ifunc diagnostic.

Further info for the more interested:

  ClangBuiltLinux/linux#1210
  https://sourceware.org/bugzilla/show_bug.cgi?id=27169
  llvm/llvm-project@a084c03 [1]

 [ bp: Massage commit message. ]

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Fangrui Song <maskray@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Link: https://lkml.kernel.org/r/20210127205600.1227437-1-maskray@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
Huawei-Dev pushed a commit to Huawei-Dev/android_kernel_huawei_hi3660 that referenced this issue Apr 12, 2024
[ Upstream commit bb73d07148c405c293e576b40af37737faf23a6a ]

This is similar to commit

  b21ebf2fb4cd ("x86: Treat R_X86_64_PLT32 as R_X86_64_PC32")

but for i386. As far as the kernel is concerned, R_386_PLT32 can be
treated the same as R_386_PC32.

R_386_PLT32/R_X86_64_PLT32 are PC-relative relocation types which
can only be used by branches. If the referenced symbol is defined
externally, a PLT will be used.

R_386_PC32/R_X86_64_PC32 are PC-relative relocation types which can be
used by address taking operations and branches. If the referenced symbol
is defined externally, a copy relocation/canonical PLT entry will be
created in the executable.

On x86-64, there is no PIC vs non-PIC PLT distinction and an
R_X86_64_PLT32 relocation is produced for both `call/jmp foo` and
`call/jmp foo@PLT` with newer (2018) GNU as/LLVM integrated assembler.
This avoids canonical PLT entries (st_shndx=0, st_value!=0).

On i386, there are 2 types of PLTs, PIC and non-PIC. Currently,
the GCC/GNU as convention is to use R_386_PC32 for non-PIC PLT and
R_386_PLT32 for PIC PLT. Copy relocations/canonical PLT entries
are possible ABI issues but GCC/GNU as will likely keep the status
quo because (1) the ABI is legacy (2) the change will drop a GNU
ld diagnostic for non-default visibility ifunc in shared objects.

clang-12 -fno-pic (since [1]) can emit R_386_PLT32 for compiler
generated function declarations, because preventing canonical PLT
entries is weighed over the rare ifunc diagnostic.

Further info for the more interested:

  ClangBuiltLinux/linux#1210
  https://sourceware.org/bugzilla/show_bug.cgi?id=27169
  llvm/llvm-project@a084c03 [1]

 [ bp: Massage commit message. ]

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Fangrui Song <maskray@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Link: https://lkml.kernel.org/r/20210127205600.1227437-1-maskray@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
Huawei-Dev pushed a commit to Huawei-Dev/android_kernel_huawei_hi3660 that referenced this issue Apr 13, 2024
[ Upstream commit bb73d07148c405c293e576b40af37737faf23a6a ]

This is similar to commit

  b21ebf2fb4cd ("x86: Treat R_X86_64_PLT32 as R_X86_64_PC32")

but for i386. As far as the kernel is concerned, R_386_PLT32 can be
treated the same as R_386_PC32.

R_386_PLT32/R_X86_64_PLT32 are PC-relative relocation types which
can only be used by branches. If the referenced symbol is defined
externally, a PLT will be used.

R_386_PC32/R_X86_64_PC32 are PC-relative relocation types which can be
used by address taking operations and branches. If the referenced symbol
is defined externally, a copy relocation/canonical PLT entry will be
created in the executable.

On x86-64, there is no PIC vs non-PIC PLT distinction and an
R_X86_64_PLT32 relocation is produced for both `call/jmp foo` and
`call/jmp foo@PLT` with newer (2018) GNU as/LLVM integrated assembler.
This avoids canonical PLT entries (st_shndx=0, st_value!=0).

On i386, there are 2 types of PLTs, PIC and non-PIC. Currently,
the GCC/GNU as convention is to use R_386_PC32 for non-PIC PLT and
R_386_PLT32 for PIC PLT. Copy relocations/canonical PLT entries
are possible ABI issues but GCC/GNU as will likely keep the status
quo because (1) the ABI is legacy (2) the change will drop a GNU
ld diagnostic for non-default visibility ifunc in shared objects.

clang-12 -fno-pic (since [1]) can emit R_386_PLT32 for compiler
generated function declarations, because preventing canonical PLT
entries is weighed over the rare ifunc diagnostic.

Further info for the more interested:

  ClangBuiltLinux/linux#1210
  https://sourceware.org/bugzilla/show_bug.cgi?id=27169
  llvm/llvm-project@a084c03 [1]

 [ bp: Massage commit message. ]

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Fangrui Song <maskray@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Link: https://lkml.kernel.org/r/20210127205600.1227437-1-maskray@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
Huawei-Dev pushed a commit to Huawei-Dev/android_kernel_huawei_hi3660 that referenced this issue Apr 13, 2024
[ Upstream commit bb73d07148c405c293e576b40af37737faf23a6a ]

This is similar to commit

  b21ebf2fb4cd ("x86: Treat R_X86_64_PLT32 as R_X86_64_PC32")

but for i386. As far as the kernel is concerned, R_386_PLT32 can be
treated the same as R_386_PC32.

R_386_PLT32/R_X86_64_PLT32 are PC-relative relocation types which
can only be used by branches. If the referenced symbol is defined
externally, a PLT will be used.

R_386_PC32/R_X86_64_PC32 are PC-relative relocation types which can be
used by address taking operations and branches. If the referenced symbol
is defined externally, a copy relocation/canonical PLT entry will be
created in the executable.

On x86-64, there is no PIC vs non-PIC PLT distinction and an
R_X86_64_PLT32 relocation is produced for both `call/jmp foo` and
`call/jmp foo@PLT` with newer (2018) GNU as/LLVM integrated assembler.
This avoids canonical PLT entries (st_shndx=0, st_value!=0).

On i386, there are 2 types of PLTs, PIC and non-PIC. Currently,
the GCC/GNU as convention is to use R_386_PC32 for non-PIC PLT and
R_386_PLT32 for PIC PLT. Copy relocations/canonical PLT entries
are possible ABI issues but GCC/GNU as will likely keep the status
quo because (1) the ABI is legacy (2) the change will drop a GNU
ld diagnostic for non-default visibility ifunc in shared objects.

clang-12 -fno-pic (since [1]) can emit R_386_PLT32 for compiler
generated function declarations, because preventing canonical PLT
entries is weighed over the rare ifunc diagnostic.

Further info for the more interested:

  ClangBuiltLinux/linux#1210
  https://sourceware.org/bugzilla/show_bug.cgi?id=27169
  llvm/llvm-project@a084c03 [1]

 [ bp: Massage commit message. ]

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Fangrui Song <maskray@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Link: https://lkml.kernel.org/r/20210127205600.1227437-1-maskray@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
Huawei-Dev pushed a commit to Huawei-Dev/android_kernel_huawei_hi3660 that referenced this issue May 20, 2024
[ Upstream commit bb73d07148c405c293e576b40af37737faf23a6a ]

This is similar to commit

  b21ebf2fb4cd ("x86: Treat R_X86_64_PLT32 as R_X86_64_PC32")

but for i386. As far as the kernel is concerned, R_386_PLT32 can be
treated the same as R_386_PC32.

R_386_PLT32/R_X86_64_PLT32 are PC-relative relocation types which
can only be used by branches. If the referenced symbol is defined
externally, a PLT will be used.

R_386_PC32/R_X86_64_PC32 are PC-relative relocation types which can be
used by address taking operations and branches. If the referenced symbol
is defined externally, a copy relocation/canonical PLT entry will be
created in the executable.

On x86-64, there is no PIC vs non-PIC PLT distinction and an
R_X86_64_PLT32 relocation is produced for both `call/jmp foo` and
`call/jmp foo@PLT` with newer (2018) GNU as/LLVM integrated assembler.
This avoids canonical PLT entries (st_shndx=0, st_value!=0).

On i386, there are 2 types of PLTs, PIC and non-PIC. Currently,
the GCC/GNU as convention is to use R_386_PC32 for non-PIC PLT and
R_386_PLT32 for PIC PLT. Copy relocations/canonical PLT entries
are possible ABI issues but GCC/GNU as will likely keep the status
quo because (1) the ABI is legacy (2) the change will drop a GNU
ld diagnostic for non-default visibility ifunc in shared objects.

clang-12 -fno-pic (since [1]) can emit R_386_PLT32 for compiler
generated function declarations, because preventing canonical PLT
entries is weighed over the rare ifunc diagnostic.

Further info for the more interested:

  ClangBuiltLinux/linux#1210
  https://sourceware.org/bugzilla/show_bug.cgi?id=27169
  llvm/llvm-project@a084c03 [1]

 [ bp: Massage commit message. ]

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Fangrui Song <maskray@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Link: https://lkml.kernel.org/r/20210127205600.1227437-1-maskray@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
Huawei-Dev pushed a commit to Huawei-Dev/android_kernel_huawei_hi3660 that referenced this issue May 20, 2024
[ Upstream commit bb73d07148c405c293e576b40af37737faf23a6a ]

This is similar to commit

  b21ebf2fb4cd ("x86: Treat R_X86_64_PLT32 as R_X86_64_PC32")

but for i386. As far as the kernel is concerned, R_386_PLT32 can be
treated the same as R_386_PC32.

R_386_PLT32/R_X86_64_PLT32 are PC-relative relocation types which
can only be used by branches. If the referenced symbol is defined
externally, a PLT will be used.

R_386_PC32/R_X86_64_PC32 are PC-relative relocation types which can be
used by address taking operations and branches. If the referenced symbol
is defined externally, a copy relocation/canonical PLT entry will be
created in the executable.

On x86-64, there is no PIC vs non-PIC PLT distinction and an
R_X86_64_PLT32 relocation is produced for both `call/jmp foo` and
`call/jmp foo@PLT` with newer (2018) GNU as/LLVM integrated assembler.
This avoids canonical PLT entries (st_shndx=0, st_value!=0).

On i386, there are 2 types of PLTs, PIC and non-PIC. Currently,
the GCC/GNU as convention is to use R_386_PC32 for non-PIC PLT and
R_386_PLT32 for PIC PLT. Copy relocations/canonical PLT entries
are possible ABI issues but GCC/GNU as will likely keep the status
quo because (1) the ABI is legacy (2) the change will drop a GNU
ld diagnostic for non-default visibility ifunc in shared objects.

clang-12 -fno-pic (since [1]) can emit R_386_PLT32 for compiler
generated function declarations, because preventing canonical PLT
entries is weighed over the rare ifunc diagnostic.

Further info for the more interested:

  ClangBuiltLinux/linux#1210
  https://sourceware.org/bugzilla/show_bug.cgi?id=27169
  llvm/llvm-project@a084c03 [1]

 [ bp: Massage commit message. ]

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Fangrui Song <maskray@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Link: https://lkml.kernel.org/r/20210127205600.1227437-1-maskray@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
[ARCH] x86 This bug impacts ARCH=i386 [BUG] linux A bug that should be fixed in the mainline kernel. [FIXED][LINUX] 5.12 This bug was fixed in Linux 5.12
Projects
None yet
Development

No branches or pull requests

6 participants