Skip to content

Repo contains files and work related to Special Topics in Quantum Computing.

Notifications You must be signed in to change notification settings

DarienNouri/Quantum-Computing

Repository files navigation

Quantum Computing Project

Repo contains files related to Special Topics in Quantum Computing course.

Files

Project Paper

The final project paper can be viewed here.

Proofs

Single Qubit Hadamard (Base Case): $$H = \frac{1}{\sqrt{2}} (|0\rangle\langle0| + |0\rangle\langle1| + |1\rangle\langle0| - |1\rangle\langle1|)$$

Inductive Hypothesis (n-1 qubits):

$$H^{\otimes (n-1)} = \frac{1}{\sqrt{2^{n-1}}} \sum_{x,y \in {0,1}^{n-1}} (-1)^{x \cdot y} |x\rangle\langle y|$$

Inductive Step (Expansion):

$$H^{\otimes n} = \frac{1}{\sqrt{2^{n}}} \sum_{x,y \in {0,1}^{n-1}} (-1)^{x \cdot y} [ \ (|x\rangle\otimes|0\rangle)\langle y|\otimes\langle0| + \\ (|x\rangle\otimes|0\rangle)\langle y|\otimes\langle1| + \\ (|x\rangle\otimes|1\rangle)\langle y|\otimes\langle0| - \\ (|x\rangle\otimes|1\rangle)\langle y|\otimes\langle1| ]$$

Final Form (n qubits): $$H^{\otimes n} = \frac{1}{\sqrt{2^n}} \sum_{x,y \in {0,1}^n} (-1)^{x \cdot y} |x\rangle\langle y|$$

Proof of Orthonormal Basis for $C^{de}$

Here is a proof that for any orthonormal bases ${\vert u_1 \rangle, \ldots, \vert u_d \rangle}$ of $C^d$ and ${\vert v_1 \rangle, \ldots, \vert v_e \rangle}$ of $C^e$, the set ${\vert u_i \rangle \otimes \vert v_j \rangle : i \in [d], j \in [e]}$ is an orthonormal basis for $C^{de}$:

Basis Span

First, we need to show that the set ${\vert u_i \rangle \otimes \vert v_j \rangle : i \in [d], j \in [e]}$ spans $C^{de}$. Any vector in $C^{de}$ can be written as a linear combination of basis vectors, i.e.,

$$ \vert \psi \rangle = \sum_{i,j} c_{ij} \vert u_i \rangle \otimes \vert v_j \rangle, $$

where $c_{ij}$ are complex coefficients. To see this, note that any state in $C^{de}$ can be written as a linear combination of computational basis states,

$$ \vert \psi \rangle = \sum_{x,y} c_{xy} \vert x \rangle \otimes \vert y \rangle, $$

where x and y range over all bit strings of length d and e, respectively. We can then rewrite each $\vert x \rangle \otimes \vert y \rangle$ as a linear combination of the basis vectors ${\vert u_i \rangle \otimes \vert v_j \rangle}$ using the following identity:

$$ \vert x \rangle \otimes \vert y \rangle = \left(\sum_i \alpha_i \vert u_i \rangle\right) \otimes \left(\sum_j \beta_j \vert v_j \rangle\right) = \sum_{i,j} \alpha_i \beta_j \vert u_i \rangle \otimes \vert v_j \rangle, $$

where $\alpha_i$ and $\beta_j$ are complex coefficients determined by the bit strings x and y. This shows that any vector in $C^{de}$ can be expressed as a linear combination of ${\vert u_i \rangle \otimes \vert v_j \rangle}$ vectors, proving that the set spans $C^{de}$.

Orthonormality

Next, we need to show that the basis vectors are orthonormal. For any two distinct basis vectors $\vert u_i \rangle \otimes \vert v_j \rangle$ and $\vert u_k \rangle \otimes \vert v_l \rangle$, their inner product is given by:

$$ \langle u_i \vert \otimes \langle v_j \vert (\vert u_k \rangle \otimes \vert v_l \rangle) = \langle u_i \vert u_k \rangle \langle v_j \vert v_l \rangle. $$ Since ${\vert u_i \rangle}$ and ${\vert v_j \rangle}$ are orthonormal bases, $\langle u_i \vert u_k \rangle = \delta_{ik}$ and $\langle v_j \vert v_l \rangle = \delta_{jl}$, where $\delta_{ij}$ is the Kronecker delta function. Therefore, the inner product becomes:

$$ \delta_{ik} \delta_{jl} = \begin{cases} 1, & \text{if } i = k \text{ and } j = l, \\ 0, & \text{otherwise}. \end{cases} $$

This shows that the basis vectors are orthonormal, as their inner product is 1 only when they are the same vector and 0 otherwise.

Conclusion

We have shown that the set ${\vert u_i \rangle \otimes \vert v_j \rangle : i \in [d], j \in [e]}$ spans $C^{de}$ and that the basis vectors are orthonormal. Therefore, this set forms an orthonormal basis for $C^{de}$.

Note: This proof relies on the properties of orthonormal bases, including the fact that they span the vector space and their inner product is 0 for distinct basis vectors. These properties are proven in standard linear algebra textbooks and are assumed to be known in this context.

Theorem and Proof

Theorem:

Let $\vert u_{\theta} \rangle = \frac{1}{\sqrt{2}}(\vert 0 \rangle + e^{i\theta}\vert 1 \rangle)$ for $\theta \in [0, 2\pi)$. There is a basis $\vert \uparrow \rangle, \vert \downarrow \rangle$ such that measuring the state $\vert u_{\theta} \rangle$ in this basis yields outcome $\uparrow$ with probability 1, and for any $\phi \neq \theta \in [0, 2\pi)$, measuring the state $\vert u_{\phi} \rangle$ in this basis yields outcome $\uparrow$ with probability strictly less than 1.

Proof:

  1. Define the basis $\vert \uparrow \rangle, \vert \downarrow \rangle$:

    • $\vert \uparrow \rangle = \frac{1}{\sqrt{2}}(\vert 0 \rangle + \vert 1 \rangle)$
    • $\vert \downarrow \rangle = \frac{1}{\sqrt{2}}(\vert 0 \rangle - \vert 1 \rangle)$
  2. Calculate the probability of measuring $\uparrow$ when the state is $\vert u_{\theta} \rangle$:

    • $\langle u_{\theta} \vert \uparrow \rangle = \langle u_{\theta} \vert \frac{1}{\sqrt{2}}(\vert 0 \rangle + \vert 1 \rangle)$
    • $= \frac{1}{\sqrt{2}}(\langle 0 \vert u_{\theta} \rangle + \langle 1 \vert u_{\theta} \rangle)$
    • $= \frac{1}{\sqrt{2}}(e^{-i\theta}/\sqrt{2} + e^{-i\theta}/\sqrt{2})$
    • $= 1$
  3. Calculate the probability of measuring $\uparrow$ when the state is $\vert u_{\phi} \rangle$ for $\phi \neq \theta$:

    • $\langle u_{\phi} \vert \uparrow \rangle = \langle u_{\phi} \vert \frac{1}{\sqrt{2}}(\vert 0 \rangle + \vert 1 \rangle)$
    • $= \frac{1}{\sqrt{2}}(\langle 0 \vert u_{\phi} \rangle + \langle 1 \vert u_{\phi} \rangle)$
    • $= \frac{1}{\sqrt{2}}(e^{-i\phi}/\sqrt{2} + e^{-i\phi}/\sqrt{2})$
    • $= \cos(\theta - \phi)/\sqrt{2}$
  4. Show that the probability of measuring $\uparrow$ is strictly less than 1 for $\phi \neq \theta$:

    • Since $\theta$ and $\phi$ are in $[0, 2\pi)$, $\theta - \phi$ is also in $[0, 2\pi)$.
    • If $\theta - \phi = 0$, then $\cos(\theta - \phi) = 1$ and the probability of measuring $\uparrow$ is 1.
    • If $\theta - \phi \neq 0$, then $\cos(\theta - \phi) < 1$ and the probability of measuring $\uparrow$ is less than 1.

Conclusion:

There is a basis $\vert \uparrow \rangle, \vert \downarrow \rangle$ such that measuring the state $\vert u_{\theta} \rangle$ in this basis yields outcome $\uparrow$ with probability 1, and for any $\phi \neq \theta \in [0, 2\pi)$, measuring the state $\vert u_{\phi} \rangle$ in this basis yields outcome $\uparrow$ with probability strictly less than 1.

3B

Rigorous Proof of Basis and Measurement Probability

Here is a more rigorous proof that there exists a basis $\vert \uparrow \rangle, \vert \downarrow \rangle$ such that measuring the state $\vert u_{\theta} \rangle$ in this basis yields outcome $\uparrow$ with probability 1, and for any $\phi \neq \theta \in [0, 2\pi]$, measuring the state $\vert u_{\phi} \rangle$ in this basis yields outcome $\uparrow$ with probability strictly less than 1:

Proof:

Basis Construction:

We can construct the desired basis $\vert \uparrow \rangle, \vert \downarrow \rangle$ using the following steps:

  1. Define $\vert \uparrow \rangle = \vert u_{\theta} \rangle$ (this is allowed as $\vert u_{\theta} \rangle$ is a normalized vector).
  2. Define a vector $\vert v \rangle$ such that:

$$\vert v \rangle = e^{i\phi} \vert 0 \rangle + \vert 1 \rangle \quad (\text{where } \phi \neq \theta)$$

Note that $\vert v \rangle$ is also normalized:

$$\Vert v \Vert^2 = \vert e^{i\phi} \vert^2 + 1 = 1 + 1 = 2$$

Gram-Schmidt Orthogonalization:

Apply the Gram-Schmidt orthogonalization procedure to $\vert \uparrow \rangle$ and $\vert v \rangle$ to obtain an orthonormal basis:

  1. Step 1: Project $\vert v \rangle$ onto $\vert \uparrow \rangle$.

$$\vert \text{proj}{\uparrow}v \rangle = \langle \uparrow \vert v \rangle \vert \uparrow \rangle = (\langle u{\theta} \vert (e^{i\phi} \vert 0 \rangle + \vert 1 \rangle)) \vert u_{\theta} \rangle = (e^{i\phi} + 1) \vert u_{\theta} \rangle$$

  1. Step 2: Normalize the projection.

$$\vert \psi \rangle = \frac{\vert \text{proj}{\uparrow}v \rangle}{\Vert \text{proj}{\uparrow}v \Vert} = \frac{(e^{i\phi} + 1) \vert u_{\theta} \rangle}{\sqrt{1 + 2e^{i\phi} \cos(\theta - \phi) + 1}}$$

  1. Step 3: Obtain the second basis vector.

$$\vert \downarrow \rangle = \vert v \rangle - \vert \text{proj}{\uparrow}v \rangle = (e^{i\phi} \vert 0 \rangle + \vert 1 \rangle) - \left(\frac{(e^{i\phi} + 1) \vert u{\theta} \rangle}{\sqrt{1 + 2e^{i\phi} \cos(\theta - \phi) + 1}}\right)$$

Probability Calculation:

  • Probability of outcome $\uparrow$:

The probability of measuring outcome $\uparrow$ in the basis $\vert \uparrow \rangle, \vert \downarrow \rangle$ is equal to the absolute value squared of the projection of the state $\vert u_{\theta} \rangle$ onto $\vert \uparrow \rangle$. Since we defined $\vert \uparrow \rangle = \vert u_{\theta} \rangle$, this probability is:

$$P(\uparrow) = \Vert \uparrow \Vert^2 = 1$$

  • Probability of outcome $\downarrow$:

The probability of measuring outcome $\downarrow$ is:

$$P(\downarrow) = 1 - P(\uparrow) = 1 - 1 = 0$$

Therefore, measuring $\vert u_{\theta} \rangle$ in the basis $\vert \uparrow \rangle, \vert \downarrow \rangle$ always yields outcome $\uparrow$

  • Case $\phi \neq \theta$: $x

Case $\phi \neq \theta$:

For any $\phi \neq \theta$, the basis vectors $\vert \uparrow \rangle$ and $\vert \downarrow \rangle$ will be different. The projection of $\vert u_{\phi} \rangle$ onto $\vert \uparrow \rangle$ will no longer be the entire vector itself, and the probability of outcome $\uparrow$ will be strictly less than 1.

Conclusion:

We have constructed a basis $\vert \uparrow \rangle, \vert \downarrow \rangle$ such that measuring the state $\vert u_{\theta} \rangle$ in this basis yields outcome $\uparrow$ with probability 1. For any $\phi \neq \theta$, measuring the state $\vert u_{\phi} \rangle$ in this basis yields outcome $\uparrow$ with probability strictly less than 1. This demonstrates the effect of relative phase on the outcome probabilities in quantum mechanics.

Note: This proof relies on the concepts of basis construction, Gram-Schmidt orthogonalization, and probability calculation in quantum mechanics.

Theorem and Proof

Theorem:

Let $\vert u_{\theta} \rangle = \frac{1}{\sqrt{2}}(\vert 0 \rangle + e^{i\theta}\vert 1 \rangle)$ for $\theta \in [0, 2\pi)$. There is a basis $\vert \uparrow \rangle, \vert \downarrow \rangle$ such that measuring the state $\vert u_{\theta} \rangle$ in this basis yields outcome $\uparrow$ with probability 1, and for any $\phi \neq \theta \in [0, 2\pi)$, measuring the state $\vert u_{\phi} \rangle$ in this basis yields outcome $\uparrow$ with probability strictly less than 1.

Proof:

  1. Define the basis $\vert \uparrow \rangle, \vert \downarrow \rangle$:

    • $\vert \uparrow \rangle = \frac{1}{\sqrt{2}}(\vert 0 \rangle + \vert 1 \rangle)$
    • $\vert \downarrow \rangle = \frac{1}{\sqrt{2}}(\vert 0 \rangle - \vert 1 \rangle)$
  2. Calculate the probability of measuring $\uparrow$ when the state is $\vert u_{\theta} \rangle$:

    • $\langle u_{\theta} \vert \uparrow \rangle = \langle u_{\theta} \vert \frac{1}{\sqrt{2}}(\vert 0 \rangle + \vert 1 \rangle)$
    • $= \frac{1}{\sqrt{2}}(\langle 0 \vert u_{\theta} \rangle + \langle 1 \vert u_{\theta} \rangle)$
    • $= \frac{1}{\sqrt{2}}\left(\frac{e^{-i\theta}}{\sqrt{2}} + \frac{e^{-i\theta}}{\sqrt{2}}\right)$
    • $= 1$
  3. Calculate the probability of measuring $\uparrow$ when the state is $\vert u_{\phi} \rangle$ for $\phi \neq \theta$:

    • $\langle u_{\phi} \vert \uparrow \rangle = \langle u_{\phi} \vert \frac{1}{\sqrt{2}}(\vert 0 \rangle + \vert 1 \rangle)$
    • $= \frac{1}{\sqrt{2}}(\langle 0 \vert u_{\phi} \rangle + \langle 1 \vert u_{\phi} \rangle)$
    • $= \frac{1}{\sqrt{2}}\left(\frac{e^{-i\phi}}{\sqrt{2}} + \frac{e^{-i\phi}}{\sqrt{2}}\right)$
    • $= \frac{\cos(\theta - \phi)}{\sqrt{2}}$

Proof:

  1. Define the basis $\vert \uparrow \rangle, \vert \downarrow \rangle$:

    • $\vert \uparrow \rangle = \frac{1}{\sqrt{2}}(\vert 0 \rangle + \vert 1 \rangle)$
    • $\vert \downarrow \rangle = \frac{1}{\sqrt{2}}(\vert 0 \rangle - \vert 1 \rangle)$
  2. Calculate the probability of measuring $\uparrow$ when the state is $\vert u_{\theta} \rangle$:

    • $\langle u_{\theta} \vert \uparrow \rangle = \langle u_{\theta} \vert \frac{1}{\sqrt{2}}(\vert 0 \rangle + \vert 1 \rangle)$
    • $= \frac{1}{\sqrt{2}}(\langle 0 \vert u_{\theta} \rangle + \langle 1 \vert u_{\theta} \rangle)$
    • $= \frac{1}{\sqrt{2}}(e^{-i\theta}/\sqrt{2} + e^{-i\theta}/\sqrt{2})$
    • $= 1$
  3. Calculate the probability of measuring $\uparrow$ when the state is $\vert u_{\phi} \rangle$ for $\phi \neq \theta$:

    • $\langle u_{\phi} \vert \uparrow \rangle = \langle u_{\phi} \vert \frac{1}{\sqrt{2}}(\vert 0 \rangle + \vert 1 \rangle)$
    • $= \frac{1}{\sqrt{2}}(\langle 0 \vert u_{\phi} \rangle + \langle 1 \vert u_{\phi} \rangle)$
    • $= \frac{1}{\sqrt{2}}(e^{-i\phi}/\sqrt{2} + e^{-i\phi}/\sqrt{2})$
    • $= \cos(\theta - \phi)/\sqrt{2}$
  4. Show that the probability of measuring $\uparrow$ is strictly less than 1 for $\phi \neq \theta$

    • Since $\theta$ and $\phi$ are in $[0, 2\pi]$, $\theta - \phi$ is also in $[0, 2\pi]$.
    • If $\theta - \phi = 0$, then $\cos(\theta - \phi) = 1$ and the probability of measuring $\uparrow$ is 1.
    • If $\theta - \phi \neq 0$, then $\cos(\theta - \phi) < 1$ and the probability of measuring $\uparrow$ is less than 1.

Conclusion:

There is a basis $\vert \uparrow \rangle, \vert \downarrow \rangle$ such that measuring the state $\vert u_{\theta} \rangle$ in this basis yields outcome $\uparrow$ with probability 1, and for any $\phi \neq \theta \in [0, 2\pi)$, measuring the state $\vert u_{\phi} \rangle$ in this basis yields outcome $\uparrow$ with probability strictly less than 1.

About

Repo contains files and work related to Special Topics in Quantum Computing.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published