Skip to content
No description, website, or topics provided.
Branch: master
Clone or download
Latest commit d4fc4fb Jun 11, 2018
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
hypertune Add unit tests Jun 12, 2018
tests Fix unit test Jun 12, 2018
.travis.yml Add unit tests Jun 12, 2018
CONTRIBUTING.md first commit May 31, 2018
LICENSE.txt first commit May 31, 2018
README.rst Add unit tests Jun 12, 2018
pylint.config.py Add unit tests Jun 12, 2018
setup.cfg first commit May 31, 2018
setup.py Push v0.1.0.dev5 to pypi Jun 12, 2018

README.rst

Metric Reporting Python Package for CloudML Hypertune

Helper Functions for CloudML Engine Hypertune Services.

pypi versions

Prerequisites

Installation

Install via pip:

pip install cloudml-hypertune

Usage

import hypertune

hpt = hypertune.HyperTune()
hpt.report_hyperparameter_tuning_metric(
    hyperparameter_metric_tag='my_metric_tag',
    metric_value=0.987,
    global_step=1000)

By default, the metric entries will be stored to /tmp/hypertune/outout.metric in json format:

{"global_step": "1000", "my_metric_tag": "0.987", "timestamp": 1525851440.123456, "trial": "0"}

Licensing

  • Apache 2.0
You can’t perform that action at this time.