Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
11 contributors

Users who have contributed to this file

@ilya-g @ma2gedev @gzoritchak @yusaka39 @Inego @erokhins @karen-sch @Movshin @t-kameyama @borsini @udalov
1941 lines (1800 sloc) 62.3 KB
/*
* Copyright 2010-2019 JetBrains s.r.o. and Kotlin Programming Language contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
@file:kotlin.jvm.JvmMultifileClass
@file:kotlin.jvm.JvmName("SequencesKt")
package kotlin.sequences
//
// NOTE: THIS FILE IS AUTO-GENERATED by the GenerateStandardLib.kt
// See: https://github.com/JetBrains/kotlin/tree/master/libraries/stdlib
//
import kotlin.random.*
/**
* Returns `true` if [element] is found in the sequence.
*
* The operation is _terminal_.
*/
public operator fun <@kotlin.internal.OnlyInputTypes T> Sequence<T>.contains(element: T): Boolean {
return indexOf(element) >= 0
}
/**
* Returns an element at the given [index] or throws an [IndexOutOfBoundsException] if the [index] is out of bounds of this sequence.
*
* The operation is _terminal_.
*
* @sample samples.collections.Collections.Elements.elementAt
*/
public fun <T> Sequence<T>.elementAt(index: Int): T {
return elementAtOrElse(index) { throw IndexOutOfBoundsException("Sequence doesn't contain element at index $index.") }
}
/**
* Returns an element at the given [index] or the result of calling the [defaultValue] function if the [index] is out of bounds of this sequence.
*
* The operation is _terminal_.
*
* @sample samples.collections.Collections.Elements.elementAtOrElse
*/
public fun <T> Sequence<T>.elementAtOrElse(index: Int, defaultValue: (Int) -> T): T {
if (index < 0)
return defaultValue(index)
val iterator = iterator()
var count = 0
while (iterator.hasNext()) {
val element = iterator.next()
if (index == count++)
return element
}
return defaultValue(index)
}
/**
* Returns an element at the given [index] or `null` if the [index] is out of bounds of this sequence.
*
* The operation is _terminal_.
*
* @sample samples.collections.Collections.Elements.elementAtOrNull
*/
public fun <T> Sequence<T>.elementAtOrNull(index: Int): T? {
if (index < 0)
return null
val iterator = iterator()
var count = 0
while (iterator.hasNext()) {
val element = iterator.next()
if (index == count++)
return element
}
return null
}
/**
* Returns the first element matching the given [predicate], or `null` if no such element was found.
*
* The operation is _terminal_.
*/
@kotlin.internal.InlineOnly
public inline fun <T> Sequence<T>.find(predicate: (T) -> Boolean): T? {
return firstOrNull(predicate)
}
/**
* Returns the last element matching the given [predicate], or `null` if no such element was found.
*
* The operation is _terminal_.
*/
@kotlin.internal.InlineOnly
public inline fun <T> Sequence<T>.findLast(predicate: (T) -> Boolean): T? {
return lastOrNull(predicate)
}
/**
* Returns first element.
* @throws [NoSuchElementException] if the sequence is empty.
*
* The operation is _terminal_.
*/
public fun <T> Sequence<T>.first(): T {
val iterator = iterator()
if (!iterator.hasNext())
throw NoSuchElementException("Sequence is empty.")
return iterator.next()
}
/**
* Returns the first element matching the given [predicate].
* @throws [NoSuchElementException] if no such element is found.
*
* The operation is _terminal_.
*/
public inline fun <T> Sequence<T>.first(predicate: (T) -> Boolean): T {
for (element in this) if (predicate(element)) return element
throw NoSuchElementException("Sequence contains no element matching the predicate.")
}
/**
* Returns the first element, or `null` if the sequence is empty.
*
* The operation is _terminal_.
*/
public fun <T> Sequence<T>.firstOrNull(): T? {
val iterator = iterator()
if (!iterator.hasNext())
return null
return iterator.next()
}
/**
* Returns the first element matching the given [predicate], or `null` if element was not found.
*
* The operation is _terminal_.
*/
public inline fun <T> Sequence<T>.firstOrNull(predicate: (T) -> Boolean): T? {
for (element in this) if (predicate(element)) return element
return null
}
/**
* Returns first index of [element], or -1 if the sequence does not contain element.
*
* The operation is _terminal_.
*/
public fun <@kotlin.internal.OnlyInputTypes T> Sequence<T>.indexOf(element: T): Int {
var index = 0
for (item in this) {
checkIndexOverflow(index)
if (element == item)
return index
index++
}
return -1
}
/**
* Returns index of the first element matching the given [predicate], or -1 if the sequence does not contain such element.
*
* The operation is _terminal_.
*/
public inline fun <T> Sequence<T>.indexOfFirst(predicate: (T) -> Boolean): Int {
var index = 0
for (item in this) {
checkIndexOverflow(index)
if (predicate(item))
return index
index++
}
return -1
}
/**
* Returns index of the last element matching the given [predicate], or -1 if the sequence does not contain such element.
*
* The operation is _terminal_.
*/
public inline fun <T> Sequence<T>.indexOfLast(predicate: (T) -> Boolean): Int {
var lastIndex = -1
var index = 0
for (item in this) {
checkIndexOverflow(index)
if (predicate(item))
lastIndex = index
index++
}
return lastIndex
}
/**
* Returns the last element.
* @throws [NoSuchElementException] if the sequence is empty.
*
* The operation is _terminal_.
*/
public fun <T> Sequence<T>.last(): T {
val iterator = iterator()
if (!iterator.hasNext())
throw NoSuchElementException("Sequence is empty.")
var last = iterator.next()
while (iterator.hasNext())
last = iterator.next()
return last
}
/**
* Returns the last element matching the given [predicate].
* @throws [NoSuchElementException] if no such element is found.
*
* The operation is _terminal_.
*/
public inline fun <T> Sequence<T>.last(predicate: (T) -> Boolean): T {
var last: T? = null
var found = false
for (element in this) {
if (predicate(element)) {
last = element
found = true
}
}
if (!found) throw NoSuchElementException("Sequence contains no element matching the predicate.")
@Suppress("UNCHECKED_CAST")
return last as T
}
/**
* Returns last index of [element], or -1 if the sequence does not contain element.
*
* The operation is _terminal_.
*/
public fun <@kotlin.internal.OnlyInputTypes T> Sequence<T>.lastIndexOf(element: T): Int {
var lastIndex = -1
var index = 0
for (item in this) {
checkIndexOverflow(index)
if (element == item)
lastIndex = index
index++
}
return lastIndex
}
/**
* Returns the last element, or `null` if the sequence is empty.
*
* The operation is _terminal_.
*/
public fun <T> Sequence<T>.lastOrNull(): T? {
val iterator = iterator()
if (!iterator.hasNext())
return null
var last = iterator.next()
while (iterator.hasNext())
last = iterator.next()
return last
}
/**
* Returns the last element matching the given [predicate], or `null` if no such element was found.
*
* The operation is _terminal_.
*/
public inline fun <T> Sequence<T>.lastOrNull(predicate: (T) -> Boolean): T? {
var last: T? = null
for (element in this) {
if (predicate(element)) {
last = element
}
}
return last
}
/**
* Returns the single element, or throws an exception if the sequence is empty or has more than one element.
*
* The operation is _terminal_.
*/
public fun <T> Sequence<T>.single(): T {
val iterator = iterator()
if (!iterator.hasNext())
throw NoSuchElementException("Sequence is empty.")
val single = iterator.next()
if (iterator.hasNext())
throw IllegalArgumentException("Sequence has more than one element.")
return single
}
/**
* Returns the single element matching the given [predicate], or throws exception if there is no or more than one matching element.
*
* The operation is _terminal_.
*/
public inline fun <T> Sequence<T>.single(predicate: (T) -> Boolean): T {
var single: T? = null
var found = false
for (element in this) {
if (predicate(element)) {
if (found) throw IllegalArgumentException("Sequence contains more than one matching element.")
single = element
found = true
}
}
if (!found) throw NoSuchElementException("Sequence contains no element matching the predicate.")
@Suppress("UNCHECKED_CAST")
return single as T
}
/**
* Returns single element, or `null` if the sequence is empty or has more than one element.
*
* The operation is _terminal_.
*/
public fun <T> Sequence<T>.singleOrNull(): T? {
val iterator = iterator()
if (!iterator.hasNext())
return null
val single = iterator.next()
if (iterator.hasNext())
return null
return single
}
/**
* Returns the single element matching the given [predicate], or `null` if element was not found or more than one element was found.
*
* The operation is _terminal_.
*/
public inline fun <T> Sequence<T>.singleOrNull(predicate: (T) -> Boolean): T? {
var single: T? = null
var found = false
for (element in this) {
if (predicate(element)) {
if (found) return null
single = element
found = true
}
}
if (!found) return null
return single
}
/**
* Returns a sequence containing all elements except first [n] elements.
*
* The operation is _intermediate_ and _stateless_.
*
* @throws IllegalArgumentException if [n] is negative.
*
* @sample samples.collections.Collections.Transformations.drop
*/
public fun <T> Sequence<T>.drop(n: Int): Sequence<T> {
require(n >= 0) { "Requested element count $n is less than zero." }
return when {
n == 0 -> this
this is DropTakeSequence -> this.drop(n)
else -> DropSequence(this, n)
}
}
/**
* Returns a sequence containing all elements except first elements that satisfy the given [predicate].
*
* The operation is _intermediate_ and _stateless_.
*
* @sample samples.collections.Collections.Transformations.drop
*/
public fun <T> Sequence<T>.dropWhile(predicate: (T) -> Boolean): Sequence<T> {
return DropWhileSequence(this, predicate)
}
/**
* Returns a sequence containing only elements matching the given [predicate].
*
* The operation is _intermediate_ and _stateless_.
*/
public fun <T> Sequence<T>.filter(predicate: (T) -> Boolean): Sequence<T> {
return FilteringSequence(this, true, predicate)
}
/**
* Returns a sequence containing only elements matching the given [predicate].
* @param [predicate] function that takes the index of an element and the element itself
* and returns the result of predicate evaluation on the element.
*
* The operation is _intermediate_ and _stateless_.
*/
public fun <T> Sequence<T>.filterIndexed(predicate: (index: Int, T) -> Boolean): Sequence<T> {
// TODO: Rewrite with generalized MapFilterIndexingSequence
return TransformingSequence(FilteringSequence(IndexingSequence(this), true, { predicate(it.index, it.value) }), { it.value })
}
/**
* Appends all elements matching the given [predicate] to the given [destination].
* @param [predicate] function that takes the index of an element and the element itself
* and returns the result of predicate evaluation on the element.
*
* The operation is _terminal_.
*/
public inline fun <T, C : MutableCollection<in T>> Sequence<T>.filterIndexedTo(destination: C, predicate: (index: Int, T) -> Boolean): C {
forEachIndexed { index, element ->
if (predicate(index, element)) destination.add(element)
}
return destination
}
/**
* Returns a sequence containing all elements that are instances of specified type parameter R.
*
* The operation is _intermediate_ and _stateless_.
*/
public inline fun <reified R> Sequence<*>.filterIsInstance(): Sequence<@kotlin.internal.NoInfer R> {
@Suppress("UNCHECKED_CAST")
return filter { it is R } as Sequence<R>
}
/**
* Appends all elements that are instances of specified type parameter R to the given [destination].
*
* The operation is _terminal_.
*/
public inline fun <reified R, C : MutableCollection<in R>> Sequence<*>.filterIsInstanceTo(destination: C): C {
for (element in this) if (element is R) destination.add(element)
return destination
}
/**
* Returns a sequence containing all elements not matching the given [predicate].
*
* The operation is _intermediate_ and _stateless_.
*/
public fun <T> Sequence<T>.filterNot(predicate: (T) -> Boolean): Sequence<T> {
return FilteringSequence(this, false, predicate)
}
/**
* Returns a sequence containing all elements that are not `null`.
*
* The operation is _intermediate_ and _stateless_.
*/
public fun <T : Any> Sequence<T?>.filterNotNull(): Sequence<T> {
@Suppress("UNCHECKED_CAST")
return filterNot { it == null } as Sequence<T>
}
/**
* Appends all elements that are not `null` to the given [destination].
*
* The operation is _terminal_.
*/
public fun <C : MutableCollection<in T>, T : Any> Sequence<T?>.filterNotNullTo(destination: C): C {
for (element in this) if (element != null) destination.add(element)
return destination
}
/**
* Appends all elements not matching the given [predicate] to the given [destination].
*
* The operation is _terminal_.
*/
public inline fun <T, C : MutableCollection<in T>> Sequence<T>.filterNotTo(destination: C, predicate: (T) -> Boolean): C {
for (element in this) if (!predicate(element)) destination.add(element)
return destination
}
/**
* Appends all elements matching the given [predicate] to the given [destination].
*
* The operation is _terminal_.
*/
public inline fun <T, C : MutableCollection<in T>> Sequence<T>.filterTo(destination: C, predicate: (T) -> Boolean): C {
for (element in this) if (predicate(element)) destination.add(element)
return destination
}
/**
* Returns a sequence containing first [n] elements.
*
* The operation is _intermediate_ and _stateless_.
*
* @throws IllegalArgumentException if [n] is negative.
*
* @sample samples.collections.Collections.Transformations.take
*/
public fun <T> Sequence<T>.take(n: Int): Sequence<T> {
require(n >= 0) { "Requested element count $n is less than zero." }
return when {
n == 0 -> emptySequence()
this is DropTakeSequence -> this.take(n)
else -> TakeSequence(this, n)
}
}
/**
* Returns a sequence containing first elements satisfying the given [predicate].
*
* The operation is _intermediate_ and _stateless_.
*
* @sample samples.collections.Collections.Transformations.take
*/
public fun <T> Sequence<T>.takeWhile(predicate: (T) -> Boolean): Sequence<T> {
return TakeWhileSequence(this, predicate)
}
/**
* Returns a sequence that yields elements of this sequence sorted according to their natural sort order.
*
* The sort is _stable_. It means that equal elements preserve their order relative to each other after sorting.
*
* The operation is _intermediate_ and _stateful_.
*/
public fun <T : Comparable<T>> Sequence<T>.sorted(): Sequence<T> {
return object : Sequence<T> {
override fun iterator(): Iterator<T> {
val sortedList = this@sorted.toMutableList()
sortedList.sort()
return sortedList.iterator()
}
}
}
/**
* Returns a sequence that yields elements of this sequence sorted according to natural sort order of the value returned by specified [selector] function.
*
* The sort is _stable_. It means that equal elements preserve their order relative to each other after sorting.
*
* The operation is _intermediate_ and _stateful_.
*/
public inline fun <T, R : Comparable<R>> Sequence<T>.sortedBy(crossinline selector: (T) -> R?): Sequence<T> {
return sortedWith(compareBy(selector))
}
/**
* Returns a sequence that yields elements of this sequence sorted descending according to natural sort order of the value returned by specified [selector] function.
*
* The sort is _stable_. It means that equal elements preserve their order relative to each other after sorting.
*
* The operation is _intermediate_ and _stateful_.
*/
public inline fun <T, R : Comparable<R>> Sequence<T>.sortedByDescending(crossinline selector: (T) -> R?): Sequence<T> {
return sortedWith(compareByDescending(selector))
}
/**
* Returns a sequence that yields elements of this sequence sorted descending according to their natural sort order.
*
* The sort is _stable_. It means that equal elements preserve their order relative to each other after sorting.
*
* The operation is _intermediate_ and _stateful_.
*/
public fun <T : Comparable<T>> Sequence<T>.sortedDescending(): Sequence<T> {
return sortedWith(reverseOrder())
}
/**
* Returns a sequence that yields elements of this sequence sorted according to the specified [comparator].
*
* The sort is _stable_. It means that equal elements preserve their order relative to each other after sorting.
*
* The operation is _intermediate_ and _stateful_.
*/
public fun <T> Sequence<T>.sortedWith(comparator: Comparator<in T>): Sequence<T> {
return object : Sequence<T> {
override fun iterator(): Iterator<T> {
val sortedList = this@sortedWith.toMutableList()
sortedList.sortWith(comparator)
return sortedList.iterator()
}
}
}
/**
* Returns a [Map] containing key-value pairs provided by [transform] function
* applied to elements of the given sequence.
*
* If any of two pairs would have the same key the last one gets added to the map.
*
* The returned map preserves the entry iteration order of the original sequence.
*
* The operation is _terminal_.
*/
public inline fun <T, K, V> Sequence<T>.associate(transform: (T) -> Pair<K, V>): Map<K, V> {
return associateTo(LinkedHashMap<K, V>(), transform)
}
/**
* Returns a [Map] containing the elements from the given sequence indexed by the key
* returned from [keySelector] function applied to each element.
*
* If any two elements would have the same key returned by [keySelector] the last one gets added to the map.
*
* The returned map preserves the entry iteration order of the original sequence.
*
* The operation is _terminal_.
*/
public inline fun <T, K> Sequence<T>.associateBy(keySelector: (T) -> K): Map<K, T> {
return associateByTo(LinkedHashMap<K, T>(), keySelector)
}
/**
* Returns a [Map] containing the values provided by [valueTransform] and indexed by [keySelector] functions applied to elements of the given sequence.
*
* If any two elements would have the same key returned by [keySelector] the last one gets added to the map.
*
* The returned map preserves the entry iteration order of the original sequence.
*
* The operation is _terminal_.
*/
public inline fun <T, K, V> Sequence<T>.associateBy(keySelector: (T) -> K, valueTransform: (T) -> V): Map<K, V> {
return associateByTo(LinkedHashMap<K, V>(), keySelector, valueTransform)
}
/**
* Populates and returns the [destination] mutable map with key-value pairs,
* where key is provided by the [keySelector] function applied to each element of the given sequence
* and value is the element itself.
*
* If any two elements would have the same key returned by [keySelector] the last one gets added to the map.
*
* The operation is _terminal_.
*/
public inline fun <T, K, M : MutableMap<in K, in T>> Sequence<T>.associateByTo(destination: M, keySelector: (T) -> K): M {
for (element in this) {
destination.put(keySelector(element), element)
}
return destination
}
/**
* Populates and returns the [destination] mutable map with key-value pairs,
* where key is provided by the [keySelector] function and
* and value is provided by the [valueTransform] function applied to elements of the given sequence.
*
* If any two elements would have the same key returned by [keySelector] the last one gets added to the map.
*
* The operation is _terminal_.
*/
public inline fun <T, K, V, M : MutableMap<in K, in V>> Sequence<T>.associateByTo(destination: M, keySelector: (T) -> K, valueTransform: (T) -> V): M {
for (element in this) {
destination.put(keySelector(element), valueTransform(element))
}
return destination
}
/**
* Populates and returns the [destination] mutable map with key-value pairs
* provided by [transform] function applied to each element of the given sequence.
*
* If any of two pairs would have the same key the last one gets added to the map.
*
* The operation is _terminal_.
*/
public inline fun <T, K, V, M : MutableMap<in K, in V>> Sequence<T>.associateTo(destination: M, transform: (T) -> Pair<K, V>): M {
for (element in this) {
destination += transform(element)
}
return destination
}
/**
* Returns a [Map] where keys are elements from the given sequence and values are
* produced by the [valueSelector] function applied to each element.
*
* If any two elements are equal, the last one gets added to the map.
*
* The returned map preserves the entry iteration order of the original sequence.
*
* The operation is _terminal_.
*
* @sample samples.collections.Collections.Transformations.associateWith
*/
@SinceKotlin("1.3")
public inline fun <K, V> Sequence<K>.associateWith(valueSelector: (K) -> V): Map<K, V> {
val result = LinkedHashMap<K, V>()
return associateWithTo(result, valueSelector)
}
/**
* Populates and returns the [destination] mutable map with key-value pairs for each element of the given sequence,
* where key is the element itself and value is provided by the [valueSelector] function applied to that key.
*
* If any two elements are equal, the last one overwrites the former value in the map.
*
* The operation is _terminal_.
*/
@SinceKotlin("1.3")
public inline fun <K, V, M : MutableMap<in K, in V>> Sequence<K>.associateWithTo(destination: M, valueSelector: (K) -> V): M {
for (element in this) {
destination.put(element, valueSelector(element))
}
return destination
}
/**
* Appends all elements to the given [destination] collection.
*
* The operation is _terminal_.
*/
public fun <T, C : MutableCollection<in T>> Sequence<T>.toCollection(destination: C): C {
for (item in this) {
destination.add(item)
}
return destination
}
/**
* Returns a [HashSet] of all elements.
*
* The operation is _terminal_.
*/
public fun <T> Sequence<T>.toHashSet(): HashSet<T> {
return toCollection(HashSet<T>())
}
/**
* Returns a [List] containing all elements.
*
* The operation is _terminal_.
*/
public fun <T> Sequence<T>.toList(): List<T> {
return this.toMutableList().optimizeReadOnlyList()
}
/**
* Returns a [MutableList] filled with all elements of this sequence.
*
* The operation is _terminal_.
*/
public fun <T> Sequence<T>.toMutableList(): MutableList<T> {
return toCollection(ArrayList<T>())
}
/**
* Returns a [Set] of all elements.
*
* The returned set preserves the element iteration order of the original sequence.
*
* The operation is _terminal_.
*/
public fun <T> Sequence<T>.toSet(): Set<T> {
return toCollection(LinkedHashSet<T>()).optimizeReadOnlySet()
}
/**
* Returns a single sequence of all elements from results of [transform] function being invoked on each element of original sequence.
*
* The operation is _intermediate_ and _stateless_.
*/
public fun <T, R> Sequence<T>.flatMap(transform: (T) -> Sequence<R>): Sequence<R> {
return FlatteningSequence(this, transform, { it.iterator() })
}
/**
* Appends all elements yielded from results of [transform] function being invoked on each element of original sequence, to the given [destination].
*
* The operation is _terminal_.
*/
public inline fun <T, R, C : MutableCollection<in R>> Sequence<T>.flatMapTo(destination: C, transform: (T) -> Sequence<R>): C {
for (element in this) {
val list = transform(element)
destination.addAll(list)
}
return destination
}
/**
* Groups elements of the original sequence by the key returned by the given [keySelector] function
* applied to each element and returns a map where each group key is associated with a list of corresponding elements.
*
* The returned map preserves the entry iteration order of the keys produced from the original sequence.
*
* The operation is _terminal_.
*
* @sample samples.collections.Collections.Transformations.groupBy
*/
public inline fun <T, K> Sequence<T>.groupBy(keySelector: (T) -> K): Map<K, List<T>> {
return groupByTo(LinkedHashMap<K, MutableList<T>>(), keySelector)
}
/**
* Groups values returned by the [valueTransform] function applied to each element of the original sequence
* by the key returned by the given [keySelector] function applied to the element
* and returns a map where each group key is associated with a list of corresponding values.
*
* The returned map preserves the entry iteration order of the keys produced from the original sequence.
*
* The operation is _terminal_.
*
* @sample samples.collections.Collections.Transformations.groupByKeysAndValues
*/
public inline fun <T, K, V> Sequence<T>.groupBy(keySelector: (T) -> K, valueTransform: (T) -> V): Map<K, List<V>> {
return groupByTo(LinkedHashMap<K, MutableList<V>>(), keySelector, valueTransform)
}
/**
* Groups elements of the original sequence by the key returned by the given [keySelector] function
* applied to each element and puts to the [destination] map each group key associated with a list of corresponding elements.
*
* @return The [destination] map.
*
* The operation is _terminal_.
*
* @sample samples.collections.Collections.Transformations.groupBy
*/
public inline fun <T, K, M : MutableMap<in K, MutableList<T>>> Sequence<T>.groupByTo(destination: M, keySelector: (T) -> K): M {
for (element in this) {
val key = keySelector(element)
val list = destination.getOrPut(key) { ArrayList<T>() }
list.add(element)
}
return destination
}
/**
* Groups values returned by the [valueTransform] function applied to each element of the original sequence
* by the key returned by the given [keySelector] function applied to the element
* and puts to the [destination] map each group key associated with a list of corresponding values.
*
* @return The [destination] map.
*
* The operation is _terminal_.
*
* @sample samples.collections.Collections.Transformations.groupByKeysAndValues
*/
public inline fun <T, K, V, M : MutableMap<in K, MutableList<V>>> Sequence<T>.groupByTo(destination: M, keySelector: (T) -> K, valueTransform: (T) -> V): M {
for (element in this) {
val key = keySelector(element)
val list = destination.getOrPut(key) { ArrayList<V>() }
list.add(valueTransform(element))
}
return destination
}
/**
* Creates a [Grouping] source from a sequence to be used later with one of group-and-fold operations
* using the specified [keySelector] function to extract a key from each element.
*
* The operation is _intermediate_ and _stateless_.
*
* @sample samples.collections.Grouping.groupingByEachCount
*/
@SinceKotlin("1.1")
public inline fun <T, K> Sequence<T>.groupingBy(crossinline keySelector: (T) -> K): Grouping<T, K> {
return object : Grouping<T, K> {
override fun sourceIterator(): Iterator<T> = this@groupingBy.iterator()
override fun keyOf(element: T): K = keySelector(element)
}
}
/**
* Returns a sequence containing the results of applying the given [transform] function
* to each element in the original sequence.
*
* The operation is _intermediate_ and _stateless_.
*
* @sample samples.collections.Collections.Transformations.map
*/
public fun <T, R> Sequence<T>.map(transform: (T) -> R): Sequence<R> {
return TransformingSequence(this, transform)
}
/**
* Returns a sequence containing the results of applying the given [transform] function
* to each element and its index in the original sequence.
* @param [transform] function that takes the index of an element and the element itself
* and returns the result of the transform applied to the element.
*
* The operation is _intermediate_ and _stateless_.
*/
public fun <T, R> Sequence<T>.mapIndexed(transform: (index: Int, T) -> R): Sequence<R> {
return TransformingIndexedSequence(this, transform)
}
/**
* Returns a sequence containing only the non-null results of applying the given [transform] function
* to each element and its index in the original sequence.
* @param [transform] function that takes the index of an element and the element itself
* and returns the result of the transform applied to the element.
*
* The operation is _intermediate_ and _stateless_.
*/
public fun <T, R : Any> Sequence<T>.mapIndexedNotNull(transform: (index: Int, T) -> R?): Sequence<R> {
return TransformingIndexedSequence(this, transform).filterNotNull()
}
/**
* Applies the given [transform] function to each element and its index in the original sequence
* and appends only the non-null results to the given [destination].
* @param [transform] function that takes the index of an element and the element itself
* and returns the result of the transform applied to the element.
*
* The operation is _terminal_.
*/
public inline fun <T, R : Any, C : MutableCollection<in R>> Sequence<T>.mapIndexedNotNullTo(destination: C, transform: (index: Int, T) -> R?): C {
forEachIndexed { index, element -> transform(index, element)?.let { destination.add(it) } }
return destination
}
/**
* Applies the given [transform] function to each element and its index in the original sequence
* and appends the results to the given [destination].
* @param [transform] function that takes the index of an element and the element itself
* and returns the result of the transform applied to the element.
*
* The operation is _terminal_.
*/
public inline fun <T, R, C : MutableCollection<in R>> Sequence<T>.mapIndexedTo(destination: C, transform: (index: Int, T) -> R): C {
var index = 0
for (item in this)
destination.add(transform(checkIndexOverflow(index++), item))
return destination
}
/**
* Returns a sequence containing only the non-null results of applying the given [transform] function
* to each element in the original sequence.
*
* The operation is _intermediate_ and _stateless_.
*/
public fun <T, R : Any> Sequence<T>.mapNotNull(transform: (T) -> R?): Sequence<R> {
return TransformingSequence(this, transform).filterNotNull()
}
/**
* Applies the given [transform] function to each element in the original sequence
* and appends only the non-null results to the given [destination].
*
* The operation is _terminal_.
*/
public inline fun <T, R : Any, C : MutableCollection<in R>> Sequence<T>.mapNotNullTo(destination: C, transform: (T) -> R?): C {
forEach { element -> transform(element)?.let { destination.add(it) } }
return destination
}
/**
* Applies the given [transform] function to each element of the original sequence
* and appends the results to the given [destination].
*
* The operation is _terminal_.
*/
public inline fun <T, R, C : MutableCollection<in R>> Sequence<T>.mapTo(destination: C, transform: (T) -> R): C {
for (item in this)
destination.add(transform(item))
return destination
}
/**
* Returns a sequence that wraps each element of the original sequence
* into an [IndexedValue] containing the index of that element and the element itself.
*
* The operation is _intermediate_ and _stateless_.
*/
public fun <T> Sequence<T>.withIndex(): Sequence<IndexedValue<T>> {
return IndexingSequence(this)
}
/**
* Returns a sequence containing only distinct elements from the given sequence.
*
* The elements in the resulting sequence are in the same order as they were in the source sequence.
*
* The operation is _intermediate_ and _stateful_.
*/
public fun <T> Sequence<T>.distinct(): Sequence<T> {
return this.distinctBy { it }
}
/**
* Returns a sequence containing only elements from the given sequence
* having distinct keys returned by the given [selector] function.
*
* The elements in the resulting sequence are in the same order as they were in the source sequence.
*
* The operation is _intermediate_ and _stateful_.
*/
public fun <T, K> Sequence<T>.distinctBy(selector: (T) -> K): Sequence<T> {
return DistinctSequence(this, selector)
}
/**
* Returns a mutable set containing all distinct elements from the given sequence.
*
* The returned set preserves the element iteration order of the original sequence.
*
* The operation is _terminal_.
*/
public fun <T> Sequence<T>.toMutableSet(): MutableSet<T> {
val set = LinkedHashSet<T>()
for (item in this) set.add(item)
return set
}
/**
* Returns `true` if all elements match the given [predicate].
*
* The operation is _terminal_.
*
* @sample samples.collections.Collections.Aggregates.all
*/
public inline fun <T> Sequence<T>.all(predicate: (T) -> Boolean): Boolean {
for (element in this) if (!predicate(element)) return false
return true
}
/**
* Returns `true` if sequence has at least one element.
*
* The operation is _terminal_.
*
* @sample samples.collections.Collections.Aggregates.any
*/
public fun <T> Sequence<T>.any(): Boolean {
return iterator().hasNext()
}
/**
* Returns `true` if at least one element matches the given [predicate].
*
* The operation is _terminal_.
*
* @sample samples.collections.Collections.Aggregates.anyWithPredicate
*/
public inline fun <T> Sequence<T>.any(predicate: (T) -> Boolean): Boolean {
for (element in this) if (predicate(element)) return true
return false
}
/**
* Returns the number of elements in this sequence.
*
* The operation is _terminal_.
*/
public fun <T> Sequence<T>.count(): Int {
var count = 0
for (element in this) checkCountOverflow(++count)
return count
}
/**
* Returns the number of elements matching the given [predicate].
*
* The operation is _terminal_.
*/
public inline fun <T> Sequence<T>.count(predicate: (T) -> Boolean): Int {
var count = 0
for (element in this) if (predicate(element)) checkCountOverflow(++count)
return count
}
/**
* Accumulates value starting with [initial] value and applying [operation] from left to right to current accumulator value and each element.
*
* The operation is _terminal_.
*/
public inline fun <T, R> Sequence<T>.fold(initial: R, operation: (acc: R, T) -> R): R {
var accumulator = initial
for (element in this) accumulator = operation(accumulator, element)
return accumulator
}
/**
* Accumulates value starting with [initial] value and applying [operation] from left to right
* to current accumulator value and each element with its index in the original sequence.
* @param [operation] function that takes the index of an element, current accumulator value
* and the element itself, and calculates the next accumulator value.
*
* The operation is _terminal_.
*/
public inline fun <T, R> Sequence<T>.foldIndexed(initial: R, operation: (index: Int, acc: R, T) -> R): R {
var index = 0
var accumulator = initial
for (element in this) accumulator = operation(checkIndexOverflow(index++), accumulator, element)
return accumulator
}
/**
* Performs the given [action] on each element.
*
* The operation is _terminal_.
*/
public inline fun <T> Sequence<T>.forEach(action: (T) -> Unit): Unit {
for (element in this) action(element)
}
/**
* Performs the given [action] on each element, providing sequential index with the element.
* @param [action] function that takes the index of an element and the element itself
* and performs the desired action on the element.
*
* The operation is _terminal_.
*/
public inline fun <T> Sequence<T>.forEachIndexed(action: (index: Int, T) -> Unit): Unit {
var index = 0
for (item in this) action(checkIndexOverflow(index++), item)
}
/**
* Returns the largest element or `null` if there are no elements.
*
* If any of elements is `NaN` returns `NaN`.
*
* The operation is _terminal_.
*/
@SinceKotlin("1.1")
public fun Sequence<Double>.max(): Double? {
val iterator = iterator()
if (!iterator.hasNext()) return null
var max = iterator.next()
if (max.isNaN()) return max
while (iterator.hasNext()) {
val e = iterator.next()
if (e.isNaN()) return e
if (max < e) max = e
}
return max
}
/**
* Returns the largest element or `null` if there are no elements.
*
* If any of elements is `NaN` returns `NaN`.
*
* The operation is _terminal_.
*/
@SinceKotlin("1.1")
public fun Sequence<Float>.max(): Float? {
val iterator = iterator()
if (!iterator.hasNext()) return null
var max = iterator.next()
if (max.isNaN()) return max
while (iterator.hasNext()) {
val e = iterator.next()
if (e.isNaN()) return e
if (max < e) max = e
}
return max
}
/**
* Returns the largest element or `null` if there are no elements.
*
* The operation is _terminal_.
*/
public fun <T : Comparable<T>> Sequence<T>.max(): T? {
val iterator = iterator()
if (!iterator.hasNext()) return null
var max = iterator.next()
while (iterator.hasNext()) {
val e = iterator.next()
if (max < e) max = e
}
return max
}
/**
* Returns the first element yielding the largest value of the given function or `null` if there are no elements.
*
* The operation is _terminal_.
*
* @sample samples.collections.Collections.Aggregates.maxBy
*/
public inline fun <T, R : Comparable<R>> Sequence<T>.maxBy(selector: (T) -> R): T? {
val iterator = iterator()
if (!iterator.hasNext()) return null
var maxElem = iterator.next()
if (!iterator.hasNext()) return maxElem
var maxValue = selector(maxElem)
do {
val e = iterator.next()
val v = selector(e)
if (maxValue < v) {
maxElem = e
maxValue = v
}
} while (iterator.hasNext())
return maxElem
}
/**
* Returns the first element having the largest value according to the provided [comparator] or `null` if there are no elements.
*
* The operation is _terminal_.
*/
public fun <T> Sequence<T>.maxWith(comparator: Comparator<in T>): T? {
val iterator = iterator()
if (!iterator.hasNext()) return null
var max = iterator.next()
while (iterator.hasNext()) {
val e = iterator.next()
if (comparator.compare(max, e) < 0) max = e
}
return max
}
/**
* Returns the smallest element or `null` if there are no elements.
*
* If any of elements is `NaN` returns `NaN`.
*
* The operation is _terminal_.
*/
@SinceKotlin("1.1")
public fun Sequence<Double>.min(): Double? {
val iterator = iterator()
if (!iterator.hasNext()) return null
var min = iterator.next()
if (min.isNaN()) return min
while (iterator.hasNext()) {
val e = iterator.next()
if (e.isNaN()) return e
if (min > e) min = e
}
return min
}
/**
* Returns the smallest element or `null` if there are no elements.
*
* If any of elements is `NaN` returns `NaN`.
*
* The operation is _terminal_.
*/
@SinceKotlin("1.1")
public fun Sequence<Float>.min(): Float? {
val iterator = iterator()
if (!iterator.hasNext()) return null
var min = iterator.next()
if (min.isNaN()) return min
while (iterator.hasNext()) {
val e = iterator.next()
if (e.isNaN()) return e
if (min > e) min = e
}
return min
}
/**
* Returns the smallest element or `null` if there are no elements.
*
* The operation is _terminal_.
*/
public fun <T : Comparable<T>> Sequence<T>.min(): T? {
val iterator = iterator()
if (!iterator.hasNext()) return null
var min = iterator.next()
while (iterator.hasNext()) {
val e = iterator.next()
if (min > e) min = e
}
return min
}
/**
* Returns the first element yielding the smallest value of the given function or `null` if there are no elements.
*
* The operation is _terminal_.
*
* @sample samples.collections.Collections.Aggregates.minBy
*/
public inline fun <T, R : Comparable<R>> Sequence<T>.minBy(selector: (T) -> R): T? {
val iterator = iterator()
if (!iterator.hasNext()) return null
var minElem = iterator.next()
if (!iterator.hasNext()) return minElem
var minValue = selector(minElem)
do {
val e = iterator.next()
val v = selector(e)
if (minValue > v) {
minElem = e
minValue = v
}
} while (iterator.hasNext())
return minElem
}
/**
* Returns the first element having the smallest value according to the provided [comparator] or `null` if there are no elements.
*
* The operation is _terminal_.
*/
public fun <T> Sequence<T>.minWith(comparator: Comparator<in T>): T? {
val iterator = iterator()
if (!iterator.hasNext()) return null
var min = iterator.next()
while (iterator.hasNext()) {
val e = iterator.next()
if (comparator.compare(min, e) > 0) min = e
}
return min
}
/**
* Returns `true` if the sequence has no elements.
*
* The operation is _terminal_.
*
* @sample samples.collections.Collections.Aggregates.none
*/
public fun <T> Sequence<T>.none(): Boolean {
return !iterator().hasNext()
}
/**
* Returns `true` if no elements match the given [predicate].
*
* The operation is _terminal_.
*
* @sample samples.collections.Collections.Aggregates.noneWithPredicate
*/
public inline fun <T> Sequence<T>.none(predicate: (T) -> Boolean): Boolean {
for (element in this) if (predicate(element)) return false
return true
}
/**
* Returns a sequence which performs the given [action] on each element of the original sequence as they pass through it.
*
* The operation is _intermediate_ and _stateless_.
*/
@SinceKotlin("1.1")
public fun <T> Sequence<T>.onEach(action: (T) -> Unit): Sequence<T> {
return map {
action(it)
it
}
}
/**
* Accumulates value starting with the first element and applying [operation] from left to right to current accumulator value and each element.
*
* The operation is _terminal_.
*/
public inline fun <S, T : S> Sequence<T>.reduce(operation: (acc: S, T) -> S): S {
val iterator = this.iterator()
if (!iterator.hasNext()) throw UnsupportedOperationException("Empty sequence can't be reduced.")
var accumulator: S = iterator.next()
while (iterator.hasNext()) {
accumulator = operation(accumulator, iterator.next())
}
return accumulator
}
/**
* Accumulates value starting with the first element and applying [operation] from left to right
* to current accumulator value and each element with its index in the original sequence.
* @param [operation] function that takes the index of an element, current accumulator value
* and the element itself and calculates the next accumulator value.
*
* The operation is _terminal_.
*/
public inline fun <S, T : S> Sequence<T>.reduceIndexed(operation: (index: Int, acc: S, T) -> S): S {
val iterator = this.iterator()
if (!iterator.hasNext()) throw UnsupportedOperationException("Empty sequence can't be reduced.")
var index = 1
var accumulator: S = iterator.next()
while (iterator.hasNext()) {
accumulator = operation(checkIndexOverflow(index++), accumulator, iterator.next())
}
return accumulator
}
/**
* Returns the sum of all values produced by [selector] function applied to each element in the sequence.
*
* The operation is _terminal_.
*/
public inline fun <T> Sequence<T>.sumBy(selector: (T) -> Int): Int {
var sum: Int = 0
for (element in this) {
sum += selector(element)
}
return sum
}
/**
* Returns the sum of all values produced by [selector] function applied to each element in the sequence.
*
* The operation is _terminal_.
*/
public inline fun <T> Sequence<T>.sumByDouble(selector: (T) -> Double): Double {
var sum: Double = 0.0
for (element in this) {
sum += selector(element)
}
return sum
}
/**
* Returns an original collection containing all the non-`null` elements, throwing an [IllegalArgumentException] if there are any `null` elements.
*
* The operation is _intermediate_ and _stateless_.
*/
public fun <T : Any> Sequence<T?>.requireNoNulls(): Sequence<T> {
return map { it ?: throw IllegalArgumentException("null element found in $this.") }
}
/**
* Splits this sequence into a sequence of lists each not exceeding the given [size].
*
* The last list in the resulting sequence may have less elements than the given [size].
*
* @param size the number of elements to take in each list, must be positive and can be greater than the number of elements in this sequence.
*
* The operation is _intermediate_ and _stateful_.
*
* @sample samples.collections.Collections.Transformations.chunked
*/
@SinceKotlin("1.2")
public fun <T> Sequence<T>.chunked(size: Int): Sequence<List<T>> {
return windowed(size, size, partialWindows = true)
}
/**
* Splits this sequence into several lists each not exceeding the given [size]
* and applies the given [transform] function to an each.
*
* @return sequence of results of the [transform] applied to an each list.
*
* Note that the list passed to the [transform] function is ephemeral and is valid only inside that function.
* You should not store it or allow it to escape in some way, unless you made a snapshot of it.
* The last list may have less elements than the given [size].
*
* @param size the number of elements to take in each list, must be positive and can be greater than the number of elements in this sequence.
*
* The operation is _intermediate_ and _stateful_.
*
* @sample samples.text.Strings.chunkedTransform
*/
@SinceKotlin("1.2")
public fun <T, R> Sequence<T>.chunked(size: Int, transform: (List<T>) -> R): Sequence<R> {
return windowed(size, size, partialWindows = true, transform = transform)
}
/**
* Returns a sequence containing all elements of the original sequence without the first occurrence of the given [element].
*
* The operation is _intermediate_ and _stateless_.
*/
public operator fun <T> Sequence<T>.minus(element: T): Sequence<T> {
return object: Sequence<T> {
override fun iterator(): Iterator<T> {
var removed = false
return this@minus.filter { if (!removed && it == element) { removed = true; false } else true }.iterator()
}
}
}
/**
* Returns a sequence containing all elements of original sequence except the elements contained in the given [elements] array.
*
* Note that the source sequence and the array being subtracted are iterated only when an `iterator` is requested from
* the resulting sequence. Changing any of them between successive calls to `iterator` may affect the result.
*
* The [elements] array may be converted to a [HashSet] to speed up the operation, thus the elements are required to have
* a correct and stable implementation of `hashCode()` that doesn't change between successive invocations.
*
* The operation is _intermediate_ and _stateful_.
*/
public operator fun <T> Sequence<T>.minus(elements: Array<out T>): Sequence<T> {
if (elements.isEmpty()) return this
return object: Sequence<T> {
override fun iterator(): Iterator<T> {
val other = elements.toHashSet()
return this@minus.filterNot { it in other }.iterator()
}
}
}
/**
* Returns a sequence containing all elements of original sequence except the elements contained in the given [elements] collection.
*
* Note that the source sequence and the collection being subtracted are iterated only when an `iterator` is requested from
* the resulting sequence. Changing any of them between successive calls to `iterator` may affect the result.
*
* The [elements] collection may be converted to a [HashSet] to speed up the operation, thus the elements are required to have
* a correct and stable implementation of `hashCode()` that doesn't change between successive invocations.
*
* The operation is _intermediate_ and _stateful_.
*/
public operator fun <T> Sequence<T>.minus(elements: Iterable<T>): Sequence<T> {
return object: Sequence<T> {
override fun iterator(): Iterator<T> {
val other = elements.convertToSetForSetOperation()
if (other.isEmpty())
return this@minus.iterator()
else
return this@minus.filterNot { it in other }.iterator()
}
}
}
/**
* Returns a sequence containing all elements of original sequence except the elements contained in the given [elements] sequence.
*
* Note that the source sequence and the sequence being subtracted are iterated only when an `iterator` is requested from
* the resulting sequence. Changing any of them between successive calls to `iterator` may affect the result.
*
* The operation is _intermediate_ for this sequence and _terminal_ and _stateful_ for the [elements] sequence.
*
* The [elements] sequence may be converted to a [HashSet] to speed up the operation, thus the elements are required to have
* a correct and stable implementation of `hashCode()` that doesn't change between successive invocations.
*/
public operator fun <T> Sequence<T>.minus(elements: Sequence<T>): Sequence<T> {
return object: Sequence<T> {
override fun iterator(): Iterator<T> {
val other = elements.toHashSet()
if (other.isEmpty())
return this@minus.iterator()
else
return this@minus.filterNot { it in other }.iterator()
}
}
}
/**
* Returns a sequence containing all elements of the original sequence without the first occurrence of the given [element].
*
* The operation is _intermediate_ and _stateless_.
*/
@kotlin.internal.InlineOnly
public inline fun <T> Sequence<T>.minusElement(element: T): Sequence<T> {
return minus(element)
}
/**
* Splits the original sequence into pair of lists,
* where *first* list contains elements for which [predicate] yielded `true`,
* while *second* list contains elements for which [predicate] yielded `false`.
*
* The operation is _terminal_.
*/
public inline fun <T> Sequence<T>.partition(predicate: (T) -> Boolean): Pair<List<T>, List<T>> {
val first = ArrayList<T>()
val second = ArrayList<T>()
for (element in this) {
if (predicate(element)) {
first.add(element)
} else {
second.add(element)
}
}
return Pair(first, second)
}
/**
* Returns a sequence containing all elements of the original sequence and then the given [element].
*
* The operation is _intermediate_ and _stateless_.
*/
public operator fun <T> Sequence<T>.plus(element: T): Sequence<T> {
return sequenceOf(this, sequenceOf(element)).flatten()
}
/**
* Returns a sequence containing all elements of original sequence and then all elements of the given [elements] array.
*
* Note that the source sequence and the array being added are iterated only when an `iterator` is requested from
* the resulting sequence. Changing any of them between successive calls to `iterator` may affect the result.
*
* The operation is _intermediate_ and _stateless_.
*/
public operator fun <T> Sequence<T>.plus(elements: Array<out T>): Sequence<T> {
return this.plus(elements.asList())
}
/**
* Returns a sequence containing all elements of original sequence and then all elements of the given [elements] collection.
*
* Note that the source sequence and the collection being added are iterated only when an `iterator` is requested from
* the resulting sequence. Changing any of them between successive calls to `iterator` may affect the result.
*
* The operation is _intermediate_ and _stateless_.
*/
public operator fun <T> Sequence<T>.plus(elements: Iterable<T>): Sequence<T> {
return sequenceOf(this, elements.asSequence()).flatten()
}
/**
* Returns a sequence containing all elements of original sequence and then all elements of the given [elements] sequence.
*
* Note that the source sequence and the sequence being added are iterated only when an `iterator` is requested from
* the resulting sequence. Changing any of them between successive calls to `iterator` may affect the result.
*
* The operation is _intermediate_ and _stateless_.
*/
public operator fun <T> Sequence<T>.plus(elements: Sequence<T>): Sequence<T> {
return sequenceOf(this, elements).flatten()
}
/**
* Returns a sequence containing all elements of the original sequence and then the given [element].
*
* The operation is _intermediate_ and _stateless_.
*/
@kotlin.internal.InlineOnly
public inline fun <T> Sequence<T>.plusElement(element: T): Sequence<T> {
return plus(element)
}
/**
* Returns a sequence of snapshots of the window of the given [size]
* sliding along this sequence with the given [step], where each
* snapshot is a list.
*
* Several last lists may have less elements than the given [size].
*
* Both [size] and [step] must be positive and can be greater than the number of elements in this sequence.
* @param size the number of elements to take in each window
* @param step the number of elements to move the window forward by on an each step, by default 1
* @param partialWindows controls whether or not to keep partial windows in the end if any,
* by default `false` which means partial windows won't be preserved
*
* @sample samples.collections.Sequences.Transformations.takeWindows
*/
@SinceKotlin("1.2")
public fun <T> Sequence<T>.windowed(size: Int, step: Int = 1, partialWindows: Boolean = false): Sequence<List<T>> {
return windowedSequence(size, step, partialWindows, reuseBuffer = false)
}
/**
* Returns a sequence of results of applying the given [transform] function to
* an each list representing a view over the window of the given [size]
* sliding along this sequence with the given [step].
*
* Note that the list passed to the [transform] function is ephemeral and is valid only inside that function.
* You should not store it or allow it to escape in some way, unless you made a snapshot of it.
* Several last lists may have less elements than the given [size].
*
* Both [size] and [step] must be positive and can be greater than the number of elements in this sequence.
* @param size the number of elements to take in each window
* @param step the number of elements to move the window forward by on an each step, by default 1
* @param partialWindows controls whether or not to keep partial windows in the end if any,
* by default `false` which means partial windows won't be preserved
*
* @sample samples.collections.Sequences.Transformations.averageWindows
*/
@SinceKotlin("1.2")
public fun <T, R> Sequence<T>.windowed(size: Int, step: Int = 1, partialWindows: Boolean = false, transform: (List<T>) -> R): Sequence<R> {
return windowedSequence(size, step, partialWindows, reuseBuffer = true).map(transform)
}
/**
* Returns a sequence of values built from the elements of `this` sequence and the [other] sequence with the same index.
* The resulting sequence ends as soon as the shortest input sequence ends.
*
* The operation is _intermediate_ and _stateless_.
*
* @sample samples.collections.Sequences.Transformations.zip
*/
public infix fun <T, R> Sequence<T>.zip(other: Sequence<R>): Sequence<Pair<T, R>> {
return MergingSequence(this, other) { t1, t2 -> t1 to t2 }
}
/**
* Returns a sequence of values built from the elements of `this` sequence and the [other] sequence with the same index
* using the provided [transform] function applied to each pair of elements.
* The resulting sequence ends as soon as the shortest input sequence ends.
*
* The operation is _intermediate_ and _stateless_.
*
* @sample samples.collections.Sequences.Transformations.zipWithTransform
*/
public fun <T, R, V> Sequence<T>.zip(other: Sequence<R>, transform: (a: T, b: R) -> V): Sequence<V> {
return MergingSequence(this, other, transform)
}
/**
* Returns a sequence of pairs of each two adjacent elements in this sequence.
*
* The returned sequence is empty if this sequence contains less than two elements.
*
* The operation is _intermediate_ and _stateless_.
*
* @sample samples.collections.Collections.Transformations.zipWithNext
*/
@SinceKotlin("1.2")
public fun <T> Sequence<T>.zipWithNext(): Sequence<Pair<T, T>> {
return zipWithNext { a, b -> a to b }
}
/**
* Returns a sequence containing the results of applying the given [transform] function
* to an each pair of two adjacent elements in this sequence.
*
* The returned sequence is empty if this sequence contains less than two elements.
*
* The operation is _intermediate_ and _stateless_.
*
* @sample samples.collections.Collections.Transformations.zipWithNextToFindDeltas
*/
@SinceKotlin("1.2")
public fun <T, R> Sequence<T>.zipWithNext(transform: (a: T, b: T) -> R): Sequence<R> {
return sequence result@ {
val iterator = iterator()
if (!iterator.hasNext()) return@result
var current = iterator.next()
while (iterator.hasNext()) {
val next = iterator.next()
yield(transform(current, next))
current = next
}
}
}
/**
* Appends the string from all the elements separated using [separator] and using the given [prefix] and [postfix] if supplied.
*
* If the collection could be huge, you can specify a non-negative value of [limit], in which case only the first [limit]
* elements will be appended, followed by the [truncated] string (which defaults to "...").
*
* The operation is _terminal_.
*
* @sample samples.collections.Collections.Transformations.joinTo
*/
public fun <T, A : Appendable> Sequence<T>.joinTo(buffer: A, separator: CharSequence = ", ", prefix: CharSequence = "", postfix: CharSequence = "", limit: Int = -1, truncated: CharSequence = "...", transform: ((T) -> CharSequence)? = null): A {
buffer.append(prefix)
var count = 0
for (element in this) {
if (++count > 1) buffer.append(separator)
if (limit < 0 || count <= limit) {
buffer.appendElement(element, transform)
} else break
}
if (limit >= 0 && count > limit) buffer.append(truncated)
buffer.append(postfix)
return buffer
}
/**
* Creates a string from all the elements separated using [separator] and using the given [prefix] and [postfix] if supplied.
*
* If the collection could be huge, you can specify a non-negative value of [limit], in which case only the first [limit]
* elements will be appended, followed by the [truncated] string (which defaults to "...").
*
* The operation is _terminal_.
*
* @sample samples.collections.Collections.Transformations.joinToString
*/
public fun <T> Sequence<T>.joinToString(separator: CharSequence = ", ", prefix: CharSequence = "", postfix: CharSequence = "", limit: Int = -1, truncated: CharSequence = "...", transform: ((T) -> CharSequence)? = null): String {
return joinTo(StringBuilder(), separator, prefix, postfix, limit, truncated, transform).toString()
}
/**
* Creates an [Iterable] instance that wraps the original sequence returning its elements when being iterated.
*/
public fun <T> Sequence<T>.asIterable(): Iterable<T> {
return Iterable { this.iterator() }
}
/**
* Returns this sequence as a [Sequence].
*/
@kotlin.internal.InlineOnly
public inline fun <T> Sequence<T>.asSequence(): Sequence<T> {
return this
}
/**
* Returns an average value of elements in the sequence.
*
* The operation is _terminal_.
*/
@kotlin.jvm.JvmName("averageOfByte")
public fun Sequence<Byte>.average(): Double {
var sum: Double = 0.0
var count: Int = 0
for (element in this) {
sum += element
checkCountOverflow(++count)
}
return if (count == 0) Double.NaN else sum / count
}
/**
* Returns an average value of elements in the sequence.
*
* The operation is _terminal_.
*/
@kotlin.jvm.JvmName("averageOfShort")
public fun Sequence<Short>.average(): Double {
var sum: Double = 0.0
var count: Int = 0
for (element in this) {
sum += element
checkCountOverflow(++count)
}
return if (count == 0) Double.NaN else sum / count
}
/**
* Returns an average value of elements in the sequence.
*
* The operation is _terminal_.
*/
@kotlin.jvm.JvmName("averageOfInt")
public fun Sequence<Int>.average(): Double {
var sum: Double = 0.0
var count: Int = 0
for (element in this) {
sum += element
checkCountOverflow(++count)
}
return if (count == 0) Double.NaN else sum / count
}
/**
* Returns an average value of elements in the sequence.
*
* The operation is _terminal_.
*/
@kotlin.jvm.JvmName("averageOfLong")
public fun Sequence<Long>.average(): Double {
var sum: Double = 0.0
var count: Int = 0
for (element in this) {
sum += element
checkCountOverflow(++count)
}
return if (count == 0) Double.NaN else sum / count
}
/**
* Returns an average value of elements in the sequence.
*
* The operation is _terminal_.
*/
@kotlin.jvm.JvmName("averageOfFloat")
public fun Sequence<Float>.average(): Double {
var sum: Double = 0.0
var count: Int = 0
for (element in this) {
sum += element
checkCountOverflow(++count)
}
return if (count == 0) Double.NaN else sum / count
}
/**
* Returns an average value of elements in the sequence.
*
* The operation is _terminal_.
*/
@kotlin.jvm.JvmName("averageOfDouble")
public fun Sequence<Double>.average(): Double {
var sum: Double = 0.0
var count: Int = 0
for (element in this) {
sum += element
checkCountOverflow(++count)
}
return if (count == 0) Double.NaN else sum / count
}
/**
* Returns the sum of all elements in the sequence.
*
* The operation is _terminal_.
*/
@kotlin.jvm.JvmName("sumOfByte")
public fun Sequence<Byte>.sum(): Int {
var sum: Int = 0
for (element in this) {
sum += element
}
return sum
}
/**
* Returns the sum of all elements in the sequence.
*
* The operation is _terminal_.
*/
@kotlin.jvm.JvmName("sumOfShort")
public fun Sequence<Short>.sum(): Int {
var sum: Int = 0
for (element in this) {
sum += element
}
return sum
}
/**
* Returns the sum of all elements in the sequence.
*
* The operation is _terminal_.
*/
@kotlin.jvm.JvmName("sumOfInt")
public fun Sequence<Int>.sum(): Int {
var sum: Int = 0
for (element in this) {
sum += element
}
return sum
}
/**
* Returns the sum of all elements in the sequence.
*
* The operation is _terminal_.
*/
@kotlin.jvm.JvmName("sumOfLong")
public fun Sequence<Long>.sum(): Long {
var sum: Long = 0L
for (element in this) {
sum += element
}
return sum
}
/**
* Returns the sum of all elements in the sequence.
*
* The operation is _terminal_.
*/
@kotlin.jvm.JvmName("sumOfFloat")
public fun Sequence<Float>.sum(): Float {
var sum: Float = 0.0f
for (element in this) {
sum += element
}
return sum
}
/**
* Returns the sum of all elements in the sequence.
*
* The operation is _terminal_.
*/
@kotlin.jvm.JvmName("sumOfDouble")
public fun Sequence<Double>.sum(): Double {
var sum: Double = 0.0
for (element in this) {
sum += element
}
return sum
}
You can’t perform that action at this time.