Skip to content

Commit

Permalink
✨ cpu 上下文
Browse files Browse the repository at this point in the history
  • Loading branch information
Nick233333 committed Jun 27, 2019
1 parent aef0f7d commit ac48ee1
Show file tree
Hide file tree
Showing 3 changed files with 69 additions and 3 deletions.
1 change: 1 addition & 0 deletions SUMMARY.md
Original file line number Diff line number Diff line change
Expand Up @@ -68,6 +68,7 @@

## 性能优化
* [平均负载](stress-sysstat-mpstat-pidstat-watch-uptime.md)
* [CPU 上下文切换](cpu-context.md)

## 参考资料
* [书籍](http://billie66.github.io/TLCL/book/)
Expand Down
59 changes: 59 additions & 0 deletions cpu-context.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
## 什么是 CPU 上下文

Linux 是一个多任务操作系统,它支持远大于 CPU 数量的任务同时运行。当然,这些任务实际上并不是真的在同时运行,而是因为系统在很短的时间内,将 CPU 轮流分配给它们,造成多任务同时运行的错觉。而在每个任务运行前,CPU 都需要知道任务从哪里加载、又从哪里开始运行,也就是说,需要系统事先帮它设置好 CPU 寄存器和程序计数器(Program Counter,PC)。

CPU 寄存器,是 CPU 内置的容量小、但速度极快的内存。而程序计数器,则是用来存储 CPU 正在执行的指令位置、或者即将执行的下一条指令位置。它们都是 CPU 在运行任何 任务前,必须的依赖环境,因此也被叫做 CPU 上下文。

CPU 上下文切换,是保证 Linux 系统正常工作的核心功能之一,一般情况下不需要我们特别关注。

但过多的上下文切换,会把 CPU 时间消耗在寄存器、内核栈以及虚拟内存等数据的保存和恢复上,从而缩短进程真正运行的时间,导致系统的整体性能大幅下降。

## CPU 上下文切换分类

CPU 上下文切换,就是先把前一个任务的 CPU 上下文(也就是 CPU 寄存器和程序计数器)保存起来,然后加载新任务的上下文到这些寄存器和程序计数器,最后再跳转到程序计数器所指的新位置, 运行新任务。

根据任务的不同,CPU 的上下文切换就可以分为 __进程上下文切换__、 __线程上下文切换__ 以及 __中断上下文切换__

#### 进程上下文切换

Linux 按照特权等级,把进程的运行空间分为内核空间和用户空间,CPU 特权等级的 Ring 0 和 Ring 3。

内核空间(Ring 0)具有最高权限,可以直接访问所有资源;
用户空间(Ring 3)只能访问受限资源,不能直接访问内存等硬件设备,必须通过系统 调用陷入到内核中,才能访问这些特权资源。

进程既可以在用户空间运行,又可以在内核空间中运行。进程在用户空间运行时,被称为进程的用户态,而陷入内核空间的时候,被称为进程的内核态。

从用户态到内核态的转变,需要通过系统调用来完成。比如,当我们查看文件内容时,就需要多次系统调用来完成:首先调用 open() 打开文件,然后调用 read() 读取文件内容,并调用 write() 将内容写到标准输出,最后再调用 close() 关闭文件。

系统调用的过程也会发生 CPU 上下文的切换

CPU 寄存器里原来用户态的指令位置,需要先保存起来。接着,为了执行内核态代码,CPU 寄存器需要更新为内核态指令的新位置。最后才是跳转到内核态运行内核任务。

而系统调用结束后,CPU 寄存器需要恢复原来保存的用户态,然后再切换到用户空间,继续运行进程。所以, __一次系统调用的过程,其实是发生了两次 CPU 上下文切换__。

需要注意的是,系统调用过程中,并不会涉及到虚拟内存等进程用户态的资源,也
不会切换进程。这跟我们通常所说的进程上下文切换是不一样的: __进程上下文切换,是指从一个进程切换到另一个进程运行。而系统调用过程中一直是同一个进程在运行__ 。所以,__系统调用过程通常称为特权模式切换,而不是上下文切换__。但实际上,系统调用过程中,CPU 的上下文切换还是无法避免的。

#### 线程上下文切换

__线程与进程最大的区别在于,线程是调度的基本单位,而进程则是资源拥有的基本单位__。说白了,所谓内核中的任务调度,实际上的调度对象是线程;而进程只是给线程提供了虚拟内存、全局变量等资源。

所以,对于线程和进程,我们可以这么理解:__当进程只有一个线程时,可以认为进程就等于线程__。当进程拥有多个线程时,这些线程会共享相同的虚拟内存和全局变量等资源。这些资源在上下文切换时是不需要修改的。另外,线程也有自己的私有数据,比如栈和寄存器等,这些在上下文换时也是需要保存的。

线程的上下文切换其实就可以分为两种情况:

第一种, 前后两个线程属于不同进程。此时,因为资源不共享,所以切换过程就跟进程上下文切换是一样。

第二种,前后两个线程属于同一个进程。此时,因为虚拟内存是共享的,所以在切换时,
虚拟内存这些资源就保持不动,只需要切换线程的私有数据、寄存器等不共享的数据。

虽然同为上下文切换,但同进程内的线程切换,要比多进程间的切换消耗更少的资源,而这,也正是多线程代替多进程的一个优势。

#### 中断上下文切换

为了快速响应硬件的事件,中断处理会打断进程的正常调度和执行,转而调用中断处理程序,响应设备事件。而在打断其他进程时,就需要将进程当前的状态保存下来,这样在中断结束后,进程仍然可以从原来的状态恢复运行。

跟进程上下文不同,中断上下文切换并不涉及到进程的用户态。所以,即便中断过程打断了一个正处在用户态的进程,也不需要保存和恢复这个进程的虚拟内存、全局变量等用户 态资源。中断上下文,其实只包括内核态中断服务程序执行所必需的状态,包括 CPU 寄存器、内核堆栈、硬件中断参数等。


对同一个 CPU 来说,中断处理比进程拥有更高的优先级,所以中断上下文切换并不会与进程上下文切换同时发生。同样道理,由于中断会打断正常进程的调度和执行,所以大部分中断处理程序都短小精悍,以便尽可能快的执行结束。
12 changes: 9 additions & 3 deletions stress-sysstat-mpstat-pidstat-watch-uptime.md
Original file line number Diff line number Diff line change
@@ -1,10 +1,10 @@
## 什么平均负载

简单来说,平均负载是指单位时间内,系统处于可运行状态和不可中断状态的平均进程数,也就是平均活跃进程数,它和 CPU 使用率并没有直接关系。
简单来说,平均负载是指单位时间内,系统处于 __可运行状态__ 和 __不可中断状态__ 的平均进程数,也就是平均活跃进程数,它和 CPU 使用率并没有直接关系。

所谓可运行状态的进程,是指正在使用 CPU 或者正在等待 CPU 的进程,也就是我们常用 ps 命令看到的,处于 R 状态(Running 或 Runnable)的进程。

不可中断状态的进程则是正处于内核态关键流程中的进程,并且这些流程是不可打断的, 比如最常见的是等待硬件设备的 I/O 响应,也就是我们在 ps 命令中看到的 D 状态 (Uninterruptible Sleep,也称为 Disk Sleep)的进程。
不可中断状态的进程则是正处于内核态关键流程中的进程,并且这些流程是不可打断的,比如最常见的是等待硬件设备的 I/O 响应,也就是我们在 ps 命令中看到的 D 状态 (Uninterruptible Sleep,也称为 Disk Sleep)的进程。

比如,当一个进程向磁盘读写数据时,为了保证数据的一致性,在得到磁盘回复前,它是
不能被其他进程或者中断打断的,这个时候的进程就处于不可中断状态。如果此时的进程
Expand All @@ -29,7 +29,13 @@

## 平均负载与 CPU 使用率

现实工作中,我们经常容易把平均负载和 CPU 使用率混淆,平均负载是指单位时间内,处于可运行状态和不可中断状态的进程数。所以,它不仅包括了正在使用 CPU 的进程,还包括等待 CPU 和等待 I/O 的进程。而 CPU 使用率,是单位时间内 CPU 繁忙情况的统计,跟平均负载并不一定完全对应。比 如:CPU 密集型进程,使用大量 CPU 会导致平均负载升高,此时这两者是一致的;I/O 密集型进程,等待 I/O 也会导致平均负载升高,但 CPU 使用率不一定很高;大量等待 CPU 的进程调度也会导致平均负载升高,此时的 CPU 使用率也会比较高。
现实工作中,我们经常容易把平均负载和 CPU 使用率混淆,__平均负载是指单位时间内,处于可运行状态和不可中断状态的进程数__。所以,它不仅包括了正在使用 CPU 的进程,还包括等待 CPU 和等待 I/O 的进程。而 CPU 使用率,是单位时间内 CPU 繁忙情况的统计,跟平均负载并不一定完全对应。比如:

CPU 密集型进程,使用大量 CPU 会导致平均负载升高,此时这两者是一致的;

I/O 密集型进程,等待 I/O 也会导致平均负载升高,但 CPU 使用率不一定很高;

大量等待 CPU 的进程调度也会导致平均负载升高,此时的 CPU 使用率也会比较高。

## 平均负载测试

Expand Down

0 comments on commit ac48ee1

Please sign in to comment.