Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

agrego ejemplos von mises y springmass #312

Merged
merged 6 commits into from
Nov 8, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .github/workflows/tests.yml
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ jobs:
- name: run mechanical-work tests
uses: joergbrech/moxunit-action@v1.1
with:
src: examples/staticVonMisesTruss examples/linearPlaneStrain examples/uniformCurvatureCantilever examples/uniaxialExtension examples/nonlinearPendulum src src/elements src/vtk src/mesh
src: examples/staticVonMisesTruss examples/springMass examples/linearPlaneStrain examples/uniformCurvatureCantilever examples/uniaxialExtension examples/nonlinearPendulum src src/elements src/vtk src/mesh
tests: ./test/runTestProblems_moxunit_disp.m
# tests-disp-coverage:
# runs-on: [ubuntu-latest]
Expand Down
56 changes: 56 additions & 0 deletions examples/dynamicVonMises/centralDiffDynVonMises.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@

function [u, normalForce, t] = centralDiffDynVonMises(rho, Lx, L0, Lc, Ic, Ac, E, kc, m, c, g, tf, dt)

mb = L0*Ac*rho ;
Lz = sqrt( L0^2 - Lx^2 ); %m

%% Defino Vector de fuerzas Internas: fint(u) - u = [u1 , u2]^T
Fint = @(u) E*Ac*L0*(u(1)^2+u(2)^2-2*Lx*u(1)+2*Lz*u(2))/2/L0^4*[-Lx+u(1);Lz+u(2)]+[kc*u(1);0];

%% Defino Vector de fuerzas Externas: gravedad
ft = @(t) [0;-(m+mb)/2*g]; %N

%% Defino Matriz de Masa Concentrada
M = [mb 0 ; 0 (mb+m)/2] ;

%% Defino Matriz de Amortiguamiento
C = [c/10 0 ; 0 c];

%% Defino Condiciones Iniciales
t0 = 0;
u0 = [0;0];
v0 = [0;0];
ac0 = M\(ft(t0)-C*v0-Fint(u0)); % de ec de movimiento Mu.. + Fint(u) = ft

% Inicializacion Difrerencia Centrada

a0 = 1/dt^2; a1=1/2/dt; a2=2*a0; a3=1/a2;

nTimes = tf/dt

Meff = a0*M+a1*C;
M2 = a0*M-a1*C;

% Comienza Marcha en el Tiempo usando Diferencia Centrada

k = 2 ; % index at which equilibrium is done. in this case t=0

epsg = @(u) (u(1)^2+2*Lz*u(2)-2*Lx*u(1)+u(2)^2)/2/L0^2;

u = zeros(2, nTimes+2) ;
acc = zeros(2, nTimes+2) ;
vel = zeros(2, nTimes+2) ;
normalForce = zeros(1, nTimes+2) ;
t = -dt:dt:tf ;

u(:,k-1) = u0 - dt*v0 + a3*ac0; % solution u(-dt) at time -dt
u(:,k ) = u0; % u(0) %

while k<=(nTimes+1)
feff = ft(t(k)) - Fint(u(:,k)) +a2*M*u(:,k) - M2*u(:,k-1) ;
u(:,k+1) = Meff\feff ; % sets solution at t+dt
acc(:,k) = a0*(u(:,k+1)-2*u(:,k)+u(:,k-1)); % computers acc and vel at t
vel(:,k) = a1*(u(:,k+1)-u(:,k-1));
normalForce(k+1) = E * Ac * epsg( u(:,k+1 ) ) ;
k=k+1;
end
124 changes: 124 additions & 0 deletions examples/dynamicVonMises/onsasExample_dynamicVonMises.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,124 @@
%md
%mdBefore defining the structs, the workspace is cleaned, the ONSAS directory is added to the path and scalar auxiliar parameters are defined.
close all, clear all ; addpath( genpath( [ pwd '/../../src'] ) );
% scalar parameters

%%% Parametros Estructura
rho = 7850; % kg/m3 (acero)
Lx = .374/2;
L0 = .205 ;

Lc = .240; %m
Ic = .0254*.0032^3/12; %m4
Ac = .0254*.0032; %m2
E = 200000e6 %Pa (acero)
kc = 3*E*Ic/Lc^3; %N/m
mConc = 1.4; %kg Pandeo incipiente en 1.4
c = 0; %kg/s (amortiguamiento por friccion juntas y arrastre pesa)
g = 9.81; %m/s2

tf = 1.0;
dt = .000025; % sec

[u, normalForce, times ] = centralDiffDynVonMises(rho, Lx, L0, Lc, Ic, Ac, E, kc, mConc, c, g, tf, dt);

mb = L0*Ac*rho; %kg
Lz = sqrt( L0^2 - Lx^2 ); %m

rhoBarraMasa = mConc*.5 / (Lz*Ac);

M = [mb 0 ; 0 (mb+mConc)/2]


nu = .3 ;
materials(1).hyperElasModel = '1DrotEngStrain' ;
materials(1).hyperElasParams = [ E nu ] ;
materials(1).density = rho ;

materials(2).hyperElasModel = '1DrotEngStrain' ;
materials(2).hyperElasParams = [ 1e10*E nu ] ;
materials(2).density = rhoBarraMasa ;

materials(3).hyperElasModel = '1DrotEngStrain' ;
materials(3).hyperElasParams = [ kc*L0/Ac nu ] ;
materials(3).density = rho ;


elements(1).elemType = 'node' ;

elements(2).elemType = 'truss';
elements(2).elemTypeGeometry = [2 sqrt(Ac) sqrt(Ac) ] ;
elements(2).elemTypeParams = 0 ;

boundaryConds(1).imposDispDofs = [ 3 5 ] ;
boundaryConds(1).imposDispVals = [ 0 0 ] ;

boundaryConds(2).imposDispDofs = [ 1 3 ] ;
boundaryConds(2).imposDispVals = [ 0 0 ] ;
boundaryConds(2).loadsCoordSys = 'global' ;
boundaryConds(2).loadsTimeFact = @(t) 1 ;
boundaryConds(2).loadsBaseVals = [ 0 0 0 0 -(mConc+mb)/2*g 0 ] ;

boundaryConds(3).imposDispDofs = [ 1 3 ] ;
boundaryConds(3).imposDispVals = [ 0 0 ] ;

boundaryConds(4).imposDispDofs = [ 1 3 5 ] ;
boundaryConds(4).imposDispVals = [ 0 0 0 ] ;

initialConds = struct() ;

mesh.nodesCoords = [ 0 0 0 ; ...
Lx 0 Lz ; ...
Lx 0 Lz-Lz; ...
-L0 0 0 ] ;

mesh.conecCell = { } ;
mesh.conecCell{ 1, 1 } = [ 0 1 1 0 1 ] ;
mesh.conecCell{ 2, 1 } = [ 0 1 2 0 2 ] ;
mesh.conecCell{ 3, 1 } = [ 0 1 3 0 3 ] ;
mesh.conecCell{ 4, 1 } = [ 0 1 4 0 4 ] ;

mesh.conecCell{ 4+1, 1 } = [ 1 2 0 0 1 2 ] ;
mesh.conecCell{ 4+2, 1 } = [ 2 2 0 0 2 3 ] ;
mesh.conecCell{ 4+3, 1 } = [ 3 2 0 0 1 4 ] ;

analysisSettings.methodName = 'newmark' ;
%md and the following parameters correspond to the iterative numerical analysis settings
analysisSettings.deltaT = 0.0005 ;
analysisSettings.finalTime = 1 ;
analysisSettings.stopTolDeltau = 1e-8 ;
analysisSettings.stopTolForces = 1e-8 ;
analysisSettings.stopTolIts = 10 ;
analysisSettings.alphaNM = 0.25 ;
analysisSettings.deltaNM = 0.5 ;

%md
%md### otherParams
otherParams.problemName = 'dynamicVonMisesTruss';
otherParams.plotsFormat = 'vtk' ;
%md
%md### Analysis case 1: NR with Rotated Eng Strain
%md In the first case ONSAS is run and the solution at the dof of interest is stored.
[matUs, loadFactorsMat] = ONSAS( materials, elements, boundaryConds, initialConds, mesh, analysisSettings, otherParams ) ;

uONSAS = [ matUs(1,:) ; matUs(6+5,:) ] ;

timesONSAS = 0:analysisSettings.deltaT:analysisSettings.finalTime ;


subplot(3,1,1)
plot(times(1:10:end),1000*u(1,1:10:end))
hold on
plot(timesONSAS,1000*uONSAS(1,:),'r' )
xlabel('t [s]'); ylabel('u_1 [mm]');
axis( [0 2 1e3*min(u(1,:))*1.1 1e3*max(u(1,:))*1.1] );
subplot(3,1,2)
hold on
plot(times(1:10:end),1000*u(2,1:10:end))
plot(timesONSAS,1000*uONSAS(2,:),'r' )
xlabel('t [s]'); ylabel('u_2 [mm]');
axis([0 2 1e3*min(u(2,:))*1.1 1e3*max(u(2,:))*1.1]);
subplot(3,1,3)
plot(times(1:10:end),normalForce(1:10:end))
xlabel('t [s]'); ylabel('Directa [N]')
axis([0 2 min(normalForce)*1.1 max(normalForce)*1.1]);
8 changes: 8 additions & 0 deletions examples/springMass/myLoadSpringMass.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
function f = myLoadSpringMass( t)

%Force data
omegaBar = 2 ;
p0 = 0.1 ;

f=zeros(12,1);
f(7) = p0 *sin( omegaBar*t) ;
127 changes: 127 additions & 0 deletions examples/springMass/onsasExample_springMass.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,127 @@
% ------------------------------------
% springmass example
% Notation and analytical based on chapter 3 from
% Ray W. Clough and Joseph Penzien, Dynamics of Structures, Third Edition, 2003
% ------------------------------------

close all, clear all ; addpath( genpath( [ pwd '/../../src'] ) );

otherParams.problemName = 'springMass' ;
otherParams.plotsFormat = 'vtk' ;

% spring mass system
k = 39.47 ;
p0 = 40 ;
c = 0.1 ;
m = 1 ;
omegaBar = 4*sqrt(k/m) ;
p0 = 40 ;
u0 = 0.0 ; % initial displacement

% parameters for truss model
l = 1 ;
A = 0.1 ;
rho = m * 2 / ( A * l ) ;
E = k * l / A ;

omegaN = sqrt( k / m );
xi = c / m / ( 2 * omegaN ) ;
nodalDamping = c ;

freq = omegaN / (2*pi) ;
TN = 2*pi / omegaN ;
dtCrit = TN / pi ;

% numerical method params
stopTolDeltau = 1e-10 ;
stopTolForces = 1e-10 ;
stopTolIts = 30 ;
alphaHHT = 0;
% ------------------------------------


materials(1).hyperElasModel = '1DrotEngStrain' ;
materials(1).hyperElasParams = [ E 0 ] ;
materials(1).density = rho ;

elements(1).elemType = 'node' ;
elements(2).elemType = 'truss';
elements(2).elemTypeGeometry = [2 sqrt(A) sqrt(A) ] ;
elements(2).elemTypeParams = 0 ;

boundaryConds(1).imposDispDofs = [ 1 3 5 ] ;
boundaryConds(1).imposDispVals = [ 0 0 0 ] ;

boundaryConds(2).imposDispDofs = [ 3 5 ] ;
boundaryConds(2).imposDispVals = [ 0 0 ] ;
boundaryConds(2).loadsCoordSys = 'global' ;
boundaryConds(2).loadsTimeFact = @(t) p0*sin( omegaBar*t ) ;
boundaryConds(2).loadsBaseVals = [ 1 0 0 0 0 0 ] ;

% initial conditions
initialConds.nonHomogeneousInitialCondU0 = [ 2 1 u0 ] ;

mesh.nodesCoords = [ 0 0 0 ; ...
l 0 0 ] ;
mesh.conecCell = { } ;
mesh.conecCell{ 1, 1 } = [ 0 1 1 0 1 ] ;
mesh.conecCell{ 2, 1 } = [ 0 1 2 0 2 ] ;
mesh.conecCell{ 3, 1 } = [ 1 2 0 0 1 2 ] ;


analysisSettings.methodName = 'newmark' ;
%md and the following parameters correspond to the iterative numerical analysis settings
analysisSettings.deltaT = 0.005 ;
analysisSettings.finalTime = 1*2*pi/omegaN ;
analysisSettings.stopTolDeltau = 1e-8 ;
analysisSettings.stopTolForces = 1e-8 ;
analysisSettings.stopTolIts = 10 ;
analysisSettings.alphaNM = 0.25 ;
analysisSettings.deltaNM = 0.5 ;

[matUsNewmark, loadFactorsMat] = ONSAS( materials, elements, boundaryConds, initialConds, mesh, analysisSettings, otherParams ) ;

if (c == 0) && (p0 == 0) % free undamped
analyticSolFlag = 1 ;
analyticFunc = @(t) ( u0 * cos( omegaN * t ) ) ;
analyticCheckTolerance = 2e-1 ;
else
beta = omegaBar / omegaN ;
omegaD = omegaN * sqrt( 1-xi^2 ) ;

G1 = (p0/k) * ( -2 * xi * beta ) / ( ( 1 - beta^2 )^2 + ( 2 * xi * beta )^2 ) ;
G2 = (p0/k) * ( 1 - beta^2 ) / ( ( 1 - beta^2 )^2 + ( 2 * xi * beta )^2 ) ;
if u0 < l
A = u0 - G1 ;
B = (xi*omegaN*A - omegaBar*G2 ) / (omegaD);
else
error('this analytical solution is not valid for this u0 and l0');
end
analyticSolFlag = 1 ;
analyticFunc = @(t) ...
( A * cos( omegaD * t ) + B * sin( omegaD * t ) ) .* exp( -xi * omegaN * t ) ...
+ G1 * cos( omegaBar * t ) + G2 * sin( omegaBar * t ) ;
analyticCheckTolerance = 5e-2 ;
end

times = 0:analysisSettings.deltaT:(analysisSettings.finalTime+analysisSettings.deltaT) ;

valsAnaly = analyticFunc(times) ;
valsNewmark = matUsNewmark(6+1,:) ;

analysisSettings.methodName = 'alphaHHT' ;
analysisSettings.alphaHHT = 0 ;

[matUsHHT, loadFactorsMat] = ONSAS( materials, elements, boundaryConds, initialConds, mesh, analysisSettings, otherParams ) ;

valsHHT = matUsHHT(6+1,:) ;

verifBooleanNewmark = ( ( norm( valsAnaly - valsNewmark ) / norm( valsAnaly ) ) < analyticCheckTolerance )
verifBooleanHHT = ( ( norm( valsAnaly - valsNewmark ) / norm( valsAnaly ) ) < analyticCheckTolerance )
verifBoolean = verifBooleanHHT && verifBooleanNewmark ;

figure
hold on, grid on
plot(valsAnaly,'b-x')
plot(valsNewmark,'r-o')
plot(valsHHT,'g-s')
7 changes: 3 additions & 4 deletions src/assembler.m
Original file line number Diff line number Diff line change
Expand Up @@ -63,14 +63,13 @@
% --- 2 loop assembly ---
% ====================================================================

density = materials.density ;

for elem = 1:nElems
mebiVec = Conec( elem, 1:4) ;

% extract element properties
hyperElasModel = materials(mebiVec(1)).hyperElasModel ;
hyperElasParams = materials(mebiVec(1)).hyperElasParams ;
hyperElasModel = materials(mebiVec(1)).hyperElasModel ;
hyperElasParams = materials(mebiVec(1)).hyperElasParams ;
density = materials(mebiVec(1)).density ;

elemType = elements(mebiVec(2)).elemType ;
elemTypeParams = elements(mebiVec(2)).elemTypeParams ;
Expand Down
4 changes: 4 additions & 0 deletions test/runTestProblems_moxunit_disp.m
Original file line number Diff line number Diff line change
Expand Up @@ -28,3 +28,7 @@
function test_5
onsasExample_nonlinearPendulum
assertEqual( verifBoolean, true );

function test_6
onsasExample_springMass
assertEqual( verifBoolean, true );