Skip to content

Commit

Permalink
r.landscape.evol manual: fix broken chars (#221)
Browse files Browse the repository at this point in the history
addresse #156
fixes #197
  • Loading branch information
neteler committed Jun 29, 2020
1 parent 4f46682 commit 0fe3f16
Showing 1 changed file with 35 additions and 35 deletions.
70 changes: 35 additions & 35 deletions grass7/raster/r.landscape.evol/r.landscape.evol.html
Expand Up @@ -540,94 +540,94 @@ <h2>REFERENCES</h2>

<p>Aiello, A., Adamo, M., Canora, F., 2015. Remote sensing and
GIS to assess soil erosion with RUSLE3D and USPED at river
basin scale in southern Italy. CATENA 131, 174185. <a
basin scale in southern Italy. CATENA 131, 174-185. <a
href="https://doi.org/10.1016/j.catena.2015.04.003">https://doi.org/10.1016/j.catena.2015.04.003</a></p>

<p>Aksoy, H., Kavvas, M.L., 2005. A review of hillslope and watershed
scale erosion and sediment transport models. CATENA 64, 247271. <a
scale erosion and sediment transport models. CATENA 64, 247-271. <a
href="https://doi.org/10.1016/j.catena.2005.08.008">https://doi.org/10.1016/j.catena.2005.08.008</a></p>

<p>Ayala, G., French, C., 2005. Erosion modeling of past land-use practices in
the Fiume di Sotto di Troina river valley, north-central Sicily. Geoarchaeology
20, 149167.</p>
20, 149-167.</p>

<p>Benavidez, R., Jackson, B., Maxwell, D., Norton, K., 2018. A
review of the (Revised) Universal Soil Loss Equation (R/USLE): with
a view to increasing its global applicability and improving soil loss
estimates. Hydrology and Earth System Sciences Discussions 134. <a
estimates. Hydrology and Earth System Sciences Discussions 1-34. <a
href="https://doi.org/10.5194/hess-2018-68">https://doi.org/10.5194/hess-2018-68</a></p>

<p>Bosco, C., de Rigo, D., Dewitte, O., Poesen, J., Panagos, P.,
2015. Modelling soil erosion at European scale: towards harmonization and
reproducibility. Natural Hazards and Earth System Science 15, 225245. <a
reproducibility. Natural Hazards and Earth System Science 15, 225-245. <a
href="https://doi.org/10.5194/nhess-15-225-2015">https://doi.org/10.5194/nhess-15-225-2015</a></p>

<p>Davy, P., Crave, A., 2000. Upscaling local-scale transport
processes in large-scale relief dynamics. Physics and Chemistry
of the Earth, Part A: Solid Earth and Geodesy 25, 533541. <a
of the Earth, Part A: Solid Earth and Geodesy 25, 533-541. <a
href="https://doi.org/10.1016/S1464-1895(00)00082-X">https://doi.org/10.1016/S1464-1895(00)00082-X</a></p>

<p>Dietrich, W.E., Bellugi, D.G., Sklar, L.S., Stock, J.D., Heimsath, A.M.,
Roering, J.J., 2003. Geomorphic Transport Laws for Predicting Landscape
form and Dynamics, in: Wilcock, P.R., Iverson, R.M. (Eds.), Prediction
in Geomorphology, Geophysical Monograph. American Geophysical Union,
pp. 103132.</p>
pp. 103-132.</p>

<p>Diodato, N., 2006. Predicting RUSLE (Revised Universal Soil Loss
Equation) Monthly Erosivity Index from Readily Available Rainfall
Data in Mediterranean Area. The Environmentalist 26, 6370. <a
Data in Mediterranean Area. The Environmentalist 26, 63-70. <a
href="https://doi.org/10.1007/s10669-006-5359-x">https://doi.org/10.1007/s10669-006-5359-x</a></p>

<p>Hammad, A.A., Lundekvam, H., Børresen, T., 2004. Adaptation of RUSLE in
the Eastern Part of the Mediterranean Region. Environmental Management 34,
829841.</p>
829-841.</p>

<p>Hancock, G.R., 2004. Modelling soil erosion on the catchment and landscape
scale using landscape evolution models a probabilistic approach using
scale using landscape evolution models - a probabilistic approach using
digital elevation model error, in: Super Soil 2004:3rd Australian New Zealand
Soils Conference. University of Sydney, Australia.</p>

<p>Kelley, A.D., Malin, M.C., Nielson, G.M., 1988. Terrain simulation using
a model of stream erosion. ACM SIGGRAPH Computer Graphics 22, 263268.</p>
a model of stream erosion. ACM SIGGRAPH Computer Graphics 22, 263-268.</p>

<p>Koko, Š., 2011. Simulation of gully erosion using the SIMWE model and
GIS. Landform Analysis 17, 8186.</p>
GIS. Landform Analysis 17, 81-86.</p>

<p>Kwang, J.S., Parker, G., 2017. Landscape evolution models using the stream
power incision model show unrealistic behavior when &lt;i&gt;m&lt;/i&gt;
∕ &lt;i&gt;n&lt;/i&gt; equals 0.5. Earth Surface Dynamics 5, 807820. <a
power incision model show unrealistic behavior when m / n equals 0.5.
Earth Surface Dynamics 5, 807-820. <a
href="https://doi.org/10.5194/esurf-5-807-2017">https://doi.org/10.5194/esurf-5-807-2017</a></p>

<p>Martínez-Casasnovas, J.A., Sánchez-Bosch, I., 2000. Impact assessment
of changes in land use/conservation practices on soil erosion in the
Penedès-Anoia vineyard region (NE Spain). Soil and Tillage Research 57,
101106.</p>
101-106.</p>

<p>Mathier, L., Roy, A.G., Paré, J.P., 1989. The effect of
slope gradient and length on the parameters of a sediment
transport equation for sheetwash. CATENA 16, 545558. <a
transport equation for sheetwash. CATENA 16, 545-558. <a
href="https://doi.org/10.1016/0341-8162(89)90041-6">https://doi.org/10.1016/0341-8162(89)90041-6</a></p>

<p>Mitasova, H., Barton, C.M., Ullah, I.I., Hofierka, J., Harmon,
R.S., 2013. GIS-based soil erosion modeling, in: Shroder, J., Bishop,
M.P. (Eds.), Remote Sensing and GIScience in Geomorphology, Treatise in
Geomorphology. Academic Press, San Diego, pp. 228258.</p>
Geomorphology. Academic Press, San Diego, pp. 228-258.</p>

<p>Mitasova, H., Brown, W.M., Johnston, D., 2002. Terrain Modeling and Soil
Erosion Simulation Final Report. Geographic Modeling Systems Lab, University
of Illinois at Urbana-Champaign.</p>

<p>Mitasova, H., Hofierka, J., Zlocha, M., Iverson, L.R., 1996a. Modelling
topographic potential for erosion and deposition using GIS. International
journal of geographical information systems 10, 629641. <a
journal of geographical information systems 10, 629-641. <a
href="https://doi.org/10.1080/02693799608902101">https://doi.org/10.1080/02693799608902101</a></p>

<p>Mitasova, H., Mitas, L., Brown, W.M., 2001. Multiscale Simulation
of Land Use Impact on Soil Erosion and Deposition Patterns, in: Stott,
D.E., Mohtar, R.H., Steinhardt, G.C. (Eds.), Sustaining the Global Farm:
10th International Soil Conservation Organization Meeting Held May 24-29,
1999. Purdue University and the USDA-ARS National Soil Erosion Research
Laboratory, pp. 11631169.</p>
Laboratory, pp. 1163-1169.</p>

<p>Mitasova, H., Mitas, L., Brown, W.M., Johnston, D., 1996b. Multidimensional
Soil Erosion/Deposition Modeling Part III: Process based erosion
Expand All @@ -642,73 +642,73 @@ <h2>REFERENCES</h2>
<p>Onori, F., De Bonis, P., Grauso, S., 2006. Soil erosion prediction at
the basin scale using the revised universal soil loss equation (RUSLE)
in a catchment of Sicily (southern Italy). Environmental Geology 50,
11291140.</p>
1129-1140.</p>

<p>Panagos, P., Ballabio, C., Borrelli, P., Meusburger, K., Klik,
A., Rousseva, S., Tadić, M.P., Michaelides, S., Hrabalíková,
A., Rousseva, S., Tadi&#263;, M.P., Michaelides, S., Hrabal&iacute;kov&aacute;,
M., Olsen, P., Aalto, J., Lakatos, M., Rymszewicz, A., Dumitrescu,
A., Beguería, S., Alewell, C., 2015a. Rainfall erosivity in
Europe. Science of The Total Environment 511, 801814. <a
Europe. Science of The Total Environment 511, 801-814. <a
href="https://doi.org/10.1016/j.scitotenv.2015.01.008">https://doi.org/10.1016/j.scitotenv.2015.01.008</a></p>

<p>Panagos, P., Borrelli, P., Meusburger, K., Alewell, C., Lugato, E.,
Montanarella, L., 2015b. Estimating the soil erosion cover-management
factor at the European scale. Land Use Policy 48, 3850. <a
factor at the European scale. Land Use Policy 48, 38-50. <a
href="https://doi.org/10.1016/j.landusepol.2015.05.021">https://doi.org/10.1016/j.landusepol.2015.05.021</a></p>

<p>Panagos, P., Borrelli, P., Meusburger, K., van der Zanden, E.H.,
Poesen, J., Alewell, C., 2015c. Modelling the effect of support
practices (P-factor) on the reduction of soil erosion by water at
European scale. Environmental Science &amp; Policy 51, 2334. <a
European scale. Environmental Science &amp; Policy 51, 23-34. <a
href="https://doi.org/10.1016/j.envsci.2015.03.012">https://doi.org/10.1016/j.envsci.2015.03.012</a></p>

<p>Panagos, P., Meusburger, K., Ballabio, C., Borrelli, P., Alewell,
C., 2014. Soil erodibility in Europe: A high-resolution dataset based
on LUCAS. Science of The Total Environment 479480, 189200. <a
on LUCAS. Science of The Total Environment 479-480, 189-200. <a
href="https://doi.org/10.1016/j.scitotenv.2014.02.010">https://doi.org/10.1016/j.scitotenv.2014.02.010</a></p>

<p>Peckham, S.D., 2003. Fluvial landscape models and catchment-scale
sediment transport. Global and Planetary Change 39, 3151. <a
sediment transport. Global and Planetary Change 39, 31-51. <a
href="https://doi.org/10.1016/S0921-8181(03)00014-6">https://doi.org/10.1016/S0921-8181(03)00014-6</a></p>

<p>Peeters, I., Rommens, T., Verstraeten, G., Govers, G., Van Rompaey, A.,
Poesen, J., Van Oost, K., 2006. Reconstructing ancient topography through
erosion modelling. Geomorphology 78, 250264. Pistocchi, A., Cassani, G.,
erosion modelling. Geomorphology 78, 250-264. Pistocchi, A., Cassani, G.,
Zani, O., n.d. Use of the USPED model for mapping soil erosion and managing
best land conservation practices 7.</p>

<p>Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K., Yoder, D.C.,
1997. Predicting soil erosion by water: a guide to conservation planning
with the Revised Universal Soil Loss Equation (RUSLE), in: Agriculture
Handbook. US Department of Agriculture, Washington, DC, pp. 1251.</p>
Handbook. US Department of Agriculture, Washington, DC, pp. 1-251.</p>

<p>Renard, K.G., Foster, G.R., Weesies, G.A., Porter, J.P., 1991. RUSLE:
Revised Universal Soil Loss Equation. Journal of Soil and Water Conservation
46, 3033.</p>
46, 30-33.</p>

<p>Renard, K.G., Freimund, J.R., 1994. Using monthly precipitation data
to estimate the R-factor in the revised USLE. Journal of Hydrology 157,
287306.</p>
287-306.</p>

<p>Sklar, L.S., Riebe, C.S., Marshall, J.A., Genetti, J., Leclere, S., Lukens,
C.L., Merces, V., 2017. The problem of predicting the size distribution of
sediment supplied by hillslopes to rivers. Geomorphology 277, 3149. <a
sediment supplied by hillslopes to rivers. Geomorphology 277, 31-49. <a
href="https://doi.org/10.1016/j.geomorph.2016.05.005">https://doi.org/10.1016/j.geomorph.2016.05.005</a></p>

<p>Terranova, O., Antronico, L., Coscarelli, R., Iaquinta,
P., 2009. Soil erosion risk scenarios in the Mediterranean
environment using RUSLE and GIS: An application model for
Calabria (southern Italy). Geomorphology 112, 228245. <a
Calabria (southern Italy). Geomorphology 112, 228-245. <a
href="https://doi.org/10.1016/j.geomorph.2009.06.009">https://doi.org/10.1016/j.geomorph.2009.06.009</a></p>

<p>Tucker, G.E., Whipple, K.X., 2002. Topographic outcomes predicted by stream
erosion models: Sensitivity analysis and intermodel comparison. J. Geophys. Res
107, 11.</p>
107, 1-1.</p>

<p>Warren, S.D., Mitasova, H., Hohmann, M.G., Landsberger, S., Skander, F.Y.,
Ruzycki, T.S., Senseman, G.M., 2005. Validation of a 3-D enhancement of the
Universal Soil Loss Equation for preediction of soil erosion and sediment
deposition. Catena 64, 281296.</p>
deposition. Catena 64, 281-296.</p>

<p>Whipple, K.X., Tucker, G.E., 2002. Implications of sediment-flux-dependent
river incision models for landscape evolution. Journal of Geophysical
Expand All @@ -720,7 +720,7 @@ <h2>REFERENCES</h2>
104, 17,661-17,674.</p>

<p>Willgoose, G., 2005. Mathematical Modeling of Whole Landscape
Evolution. Annual Review of Earth and Planetary Sciences 33, 443459.</p>
Evolution. Annual Review of Earth and Planetary Sciences 33, 443-459.</p>

<h2>AUTHORS</h2>

Expand Down

0 comments on commit 0fe3f16

Please sign in to comment.