Skip to content
dcmqi (DICOM for Quantitative Imaging) is a free, open source library that can help with the conversion between imaging research formats and the standard DICOM representation for image analysis results
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
.circleci
CMake COMP: Fix building of project against DCMQI when DCMQI_BUILD_APPS is OFF Jan 30, 2019
CMakeExternals
Design
apps
data
doc
docker
include/dcmqi
jsoncpp ENH: update to jsoncpp 1.8.4 Jan 28, 2019
libsrc ENH: add SEG SegmentLabel support Mar 13, 2019
util ENH: add a tool to print the content of SEG frames Apr 5, 2018
.gitignore ENH: Added Visual Studio Code settings directory to ignored files Dec 13, 2017
.travis.yml
CMakeLists.txt ENH: set version to 1.2.1 Feb 1, 2019
CONTRIBUTING.md ENH: add contribution guidelines Jan 20, 2017
LICENSE.txt ENH: switch to 3-clause BSD license Jul 14, 2017
README.md
SuperBuild.cmake cmake: Simplify build system using new feature from ExternalProjectDe… Mar 1, 2018
appveyor.yml
dcmqi.png

README.md

OpenHub codecov Join the chat at https://gitter.im/QIICR/dcmqi

Docker
Linux macOS Windows
Build Status for latest Circle CI TravisCI Appveyor

Introduction

dcmqi (DICOM (dcm) for Quantitative Imaging (qi)) is a collection of libraries and command line tools with minimum dependencies to support standardized communication of quantitative image analysis research data using DICOM standard.

Specifically, the current focus of development for dcmqi is to support conversion of the following data types to and from DICOM:

As an introduction to the motivation, capabilities and advantages of using the DICOM standard, and the objects mentioned above, you might want to read this open access paper:

Fedorov A, Clunie D, Ulrich E, Bauer C, Wahle A, Brown B, Onken M, Riesmeier J, Pieper S, Kikinis R, Buatti J, Beichel RR. (2016) DICOM for quantitative imaging biomarker development: a standards based approach to sharing clinical data and structured PET/CT analysis results in head and neck cancer research. PeerJ 4:e2057 https://doi.org/10.7717/peerj.2057

dcmqi is developed and maintained by the QIICR project.

Getting started

License

dcmqi is distributed under 3-clause BSD license.

Our goal is to support and encourage adoption of the DICOM standard in both academic and research tools. We will be happy to hear about your usage of dcmqi, but you don't have to report back to us.

Support

You can communicate you feedback, feature requests, comments or problem reports using any of the methods below:

Acknowledgments

To acknowledge dcmqi in an academic paper, please cite

Herz C, Fillion-Robin J-C, Onken M, Riesmeier J, Lasso A, Pinter C, Fichtinger G, Pieper S, Clunie D, Kikinis R, Fedorov A. dcmqi: An Open Source Library for Standardized Communication of Quantitative Image Analysis Results Using DICOM. Cancer Research. 2017;77(21):e87–e90 http://cancerres.aacrjournals.org/content/77/21/e87.

If you like dcmqi, please give the dcmqi repository a star on github. This is an easy way to show thanks and it can help us qualify for useful services that are only open to widely recognized open projects.

This work is supported primarily by the National Institutes of Health, National Cancer Institute, Informatics Technology for Cancer Research (ITCR) program, grant Quantitative Image Informatics for Cancer Research (QIICR) (U24 CA180918, PIs Kikinis and Fedorov). We also acknowledge support of the following grants: Neuroimage Analysis Center (NAC) (P41 EB015902, PI Kikinis) and National Center for Image Guided Therapy (NCIGT) (P41 EB015898, PI Tempany).

References

  1. Fedorov A, Clunie D, Ulrich E, Bauer C, Wahle A, Brown B, Onken M, Riesmeier J, Pieper S, Kikinis R, Buatti J, Beichel RR. (2016) DICOM for quantitative imaging biomarker development: a standards based approach to sharing clinical data and structured PET/CT analysis results in head and neck cancer research. PeerJ 4:e2057 https://doi.org/10.7717/peerj.2057

  2. Herz C, Fillion-Robin J-C, Onken M, Riesmeier J, Lasso A, Pinter C, Fichtinger G, Pieper S, Clunie D, Kikinis R, Fedorov A. dcmqi: An Open Source Library for Standardized Communication of Quantitative Image Analysis Results Using DICOM. Cancer Research. 2017;77(21):e87–e90 http://cancerres.aacrjournals.org/content/77/21/e87.

You can’t perform that action at this time.