CIZSL++: Creativity Inspired Generative Zero-shot Learning, Mohamed Elhoseiny, Kai Yi, Mohamed Elfeki, Arxiv, 2020
Python 3.6
Pytorch 1.6
sklearn, scipy, matplotlib, numpy, random, copy
You can download the text-based dataset at dataset CUBird and NABird. For attribute-based data, you can access to here.
Please put the uncompressed data to the folder "data".
python train_cizslv2.py --dataset 'CUB' --splitmode 'easy' --creativity_weight 1 --exp_name 'cizslv2'
python train_cizslv2.py --dataset 'CUB' --splitmode 'hard' --creativity_weight 0.1 --exp_name 'cizslv2'
python train_cizslv2.py --dataset 'NAB' --splitmode 'easy' --creativity_weight 0.001 --exp_name 'cizslv2'
python train_cizslv2.py --dataset 'NAB' --splitmode 'hard' --creativity_weight 1 --exp_name 'cizslv2'
- Yizhe Zhu, Mohamed Elhoseiny, Bingchen Liu, Xi Peng and Ahmed Elgammal "A Generative Adversarial Approach for Zero-Shot Learning from Noisy Texts", CVPR, 2018
- Mohamed Elhoseiny, Mohamed Elfeki, Creativity Inspired Zero Shot Learning, Thirty-sixth International Conference on Computer Vision (ICCV), 2019
If you find this code is useful, please cite:
@article{elhoseiny2021cizsl++,
title={CIZSL++: Creativity Inspired Generative Zero-Shot Learning},
author={Elhoseiny, Mohamed and Yi, Kai and Elfeki, Mohamed},
journal={arXiv preprint arXiv:2101.00173},
year={2021}
}