Skip to content

This project is an example of implementing continuous piecewise Lennard-Jones-like potentials in Lammps, such as the model of Kim & Hummer. Instead of writing a custom pair_style, only standard pair_styles are used.

License

Notifications You must be signed in to change notification settings

aah217/KH_LAMMPS

Repository files navigation

Implementation of Kim & Hummer (KH) Model [1] in LAMMPS

This project uses continuous piecewise Lennard-Jones-like potentials to implement the KH Model A & D in LAMMPS. Instead of writing a custom pair_style, only standard pair_styles are used. This method can thus be used quickly and easily on most versions of LAMMPS, which however may lead to reduction of efficiency compared to compiled custom potentials. That stated, the authors have only tested this method on a limited number of LAMMPS versions and can't guarantee it will work with every version. Provided python scripts can be used to initialize simulations from pdb files. KH Model D includes three additional bead definitions for phosphoserine, phosphothreonine, and phosphotyrosine. For non-bonded pairwise interactions these beads are treated as aspartic acid but with charge, mass, and radii updated to match those calculated for the hydrophobicity scale model as described in [4].

The code of this project was used in the simulations in [2] & [6], which can be used a reference. We have implemented the Hydrophobicity Scale [4][5] Model using similar methods which can be found here: https://github.com/aah217/HPS_LAMMPS

Table of important parameters where listed type is indentifier used in LAMMPS input files:

name abc tla charge (e) radius (Å) type mass (g/mole)
Alanine A ALA 0 5.04 1 71.08
Cysteine C CYS 0 5.48 2 103.1
Aspartic Acid D ASP -1 5.58 3 115.1
Glutamic Acid E GLU -1 5.92 4 129.1
Phenylalanine F PHE 0 6.36 5 147.2
Glycine G GLY 0 4.5 6 57.05
Histidine H HIS 0.5 6.08 7 137.1
Isoleucine I ILE 0 6.18 8 113.2
Lysine K LYS 1 6.36 9 128.2
Leucine L LEU 0 6.18 10 113.2
Methionine M MET 0 6.18 11 131.2
Asparagine N ASN 0 5.68 12 114.1
Proline P PRO 0 5.56 13 97.12
Glutamine Q GLN 0 6.02 14 128.1
Arginine R ARG 1 6.56 15 156.2
Serine S SER 0 5.18 16 87.08
Threonine T THR 0 5.62 17 101.1
Valine V VAL 0 5.86 18 99.07
Tryptophan W TRP 0 6.78 19 186.2
Tyrosine Y TYR 0 6.46 20 163.2
Phosphoserine J SEP -2 6.36 21 165.03
Phosphothreonin O THP -2 6.62 22 179.05
Phosphotyrosine U THY -2 7.38 23 241.15

Miyazawa-Jernigan contact potential between residues i & j in RT [3]:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 -2.72 -3.57 -1.70 -1.51 -4.81 -2.31 -2.41 -4.58 -1.31 -4.91 -3.94 -1.84 -2.03 -1.89 -1.83 -2.01 -2.32 -4.04 -3.82 -3.36
2 -5.44 -2.41 -2.27 -5.80 -3.16 -3.60 -5.50 -1.95 -5.83 -4.99 -2.59 -3.07 -2.85 -2.57 -2.86 -3.11 -4.96 -4.95 -4.16
3 -1.21 -1.02 -3.48 -1.59 -2.32 -3.17 -1.68 -3.40 -2.57 -1.68 -1.33 -1.46 -2.29 -1.63 -1.80 -2.48 -2.84 -2.76
4 -0.91 -3.56 -1.22 -2.15 -3.27 -1.80 -3.59 -2.89 -1.51 -1.26 -1.42 -2.27 -1.48 -1.74 -2.67 -2.99 -2.79
5 -7.26 -4.13 -4.77 -6.84 -3.36 -7.28 -6.56 -3.75 -4.25 -4.10 -3.98 -4.02 -4.28 -6.29 -6.16 -5.66
6 -2.24 -2.15 -3.78 -1.15 -4.16 -3.39 -1.74 -1.87 -1.66 -1.72 -1.82 -2.08 -3.38 -3.42 -3.01
7 -3.05 -4.14 -1.35 -4.54 -3.98 -2.08 -2.25 -1.98 -2.16 -2.11 -2.42 -3.58 -3.98 -3.52
8 -6.54 -3.01 -7.04 -6.02 -3.24 -3.76 -3.67 -3.63 -3.52 -4.03 -6.05 -5.78 -5.25
9 -0.12 -3.37 -2.48 -1.21 -0.97 -1.29 -0.59 -1.05 -1.31 -2.49 -2.69 -2.60
10 -7.37 -6.41 -3.74 -4.20 -4.04 -4.03 -3.92 -4.34 -6.48 -6.14 -5.67
11 -5.46 -2.95 -3.45 -3.30 -3.12 -3.03 -3.51 -5.32 -5.55 -4.91
12 -1.68 -1.53 -1.71 -1.64 -1.58 -1.88 -2.83 -3.07 -2.76
13 -1.75 -1.73 -1.70 -1.57 -1.90 -3.32 -3.73 -3.19
14 -1.54 -1.80 -1.49 -1.90 -3.07 -3.11 -2.97
15 -1.55 -1.62 -1.90 -3.07 -3.41 -3.16
16 -1.67 -1.96 -3.05 -2.99 -2.78
17 -2.12 -3.46 -3.22 -3.01
18 -5.52 -5.18 -4.62
19 -5.06 -4.66
20 -4.17
  1. Y.C. Kim, G. Hummer (2008) Coarse-grained models for simulation of multiprotein complexes: application to ubiquitin binding. J. Mol. Biol. 375,5 1416-1433. https://doi.org/10.1016/j.jmb.2007.11.063
  2. H. Smith, N. Pinkerton, D. B. Heisler, E. Kudryashova, A. R. Hall, K. R. Karch, A. Norris, V. Wysocki, M. Sotomayor, E. Reisler, D. Vavylonis, D. S. Kudryashov (2021) Rounding out the understanding of ACD toxicity with the discovery of cyclic forms of actin oligomers. Int. J. Mol. Sci. 22,718. https://doi.org/10.3390/ijms22020718
  3. S. Miyazawa, R.L. Jernigan (1996) Residue–Residue Potentials with a Favorable Contact Pair Term and an Unfavorable High Packing Density Term, for Simulation and Threading. J. Mol. Biol. 256,3 623-644. https://doi.org/10.1006/jmbi.1996.0114
  4. T.M. Perdikari, N. Jovic, G. L. Dignon, Y.C. Kim, N.L. Fawzi, J. Mittal (2021) A predictive coarse-grained model for position-specific effects of post-translational modifications. Biophys. J. 120,7 1187-1197. https://doi.org/10.1016/j.bpj.2021.01.034
  5. G.L. Dignon, W. Zheng, Y.C. Kim, R.B. Best, J. Mittal (2018) Sequence determinants of protein phase behavior from a coarse-grained model. PLOS Computational Biology 14(1): e1005941. https://doi.org/10.1371/journal.pcbi.1005941
  6. R. Bhattacharjee, A. R. Hall, M. C. Mangione, M. G. Igarashi, R. H. Roberts-Galbraith, J. Chen, D. Vavylonis, K. L. Gould (2022) Multiple polarity kinases inhibit phase separation of F-BAR protein Cdc15 and antagonize cytokinetic ring assembly in fission yeast. bioRxiv. https://doi.org/10.1101/2022.08.26.505417

About

This project is an example of implementing continuous piecewise Lennard-Jones-like potentials in Lammps, such as the model of Kim & Hummer. Instead of writing a custom pair_style, only standard pair_styles are used.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages