Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Small correction to time period. #129

Merged
merged 1 commit into from Jul 13, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Jump to
Jump to file
Failed to load files.
Diff view
Diff view
39 changes: 31 additions & 8 deletions orbitdeterminator/propagation/cowell.py
@@ -1,7 +1,6 @@
import numpy as np
from orbitdeterminator.util.new_tle_kep_state import kep_to_state

mu = 398600.4405
mu = 398600.4418
J2 = 1.08262668e-3
Re = 6378.137
we = 7.292115e-5
Expand Down Expand Up @@ -83,18 +82,42 @@ def rk4(s,t0,tf,h=30):
s = s+(k1+2*k2+2*k3+k4)/6
t = t+h

# if (s[2]<0 and s[2]>-200 and s[5]>0):
# dt = -s[2]/s[5]
# print(t+dt)

return s

def propagate_state(s,t0,tf):
return rk4(s,t0,tf)
def time_period(s,h=30):
t = 0

old_z, pass_1 = 0, None

while(True):
k1 = h*sdot(s)
k2 = h*sdot(s+k1/2)
k3 = h*sdot(s+k2/2)
k4 = h*sdot(s+k3)

s = s+(k1+2*k2+2*k3+k4)/6
t = t+h

def propagate_kep(kep,t0,tf):
s = kep_to_state(kep)
if (s[2]>=0 and old_z<0):
dt = -s[2]/s[5]
t2 = t+dt

if pass_1 is None:
pass_1 = t2
else:
return t2-pass_1

old_z = s[2]

def propagate_state(s,t0,tf):
return rk4(s,t0,tf)

if __name__ == "__main__":
#s = np.array([-1.25407719e+02,6.23615970e+03,2.67702463e+03,-5.21833653e+00,2.12226865e+00,-5.19435315e+00])
s = np.array([2.87327861e+03,5.22872234e+03,3.23884457e+03,-3.49536799e+00,4.87267295e+00,-4.76846910e+00])
s = np.array([2.87393871e+03,5.22992358e+03,3.23958865e+03,-3.49496655e+00,4.87211332e+00,-4.76792145e+00])
t0, tf = 0, 88796.3088704
final = propagate_state(s,t0,tf)
print(final)
2 changes: 1 addition & 1 deletion orbitdeterminator/propagation/dgsn_simulator.py
Expand Up @@ -145,7 +145,7 @@ class SimParams():
#epoch = 1529410874
#iss_kep = np.array([6775,0.0002893,51.6382,211.1340,7.1114,148.9642])

iss_kep = np.array([6786.6420,0.0003456,51.6418,290.0933,266.6543,212.4306])
iss_kep = np.array([6785.6420,0.0003456,51.6418,290.0933,266.6543,212.4306])
params = SimParams()
params.kep = iss_kep
params.epoch = epoch
Expand Down
7 changes: 1 addition & 6 deletions orbitdeterminator/propagation/simulator.py
Expand Up @@ -115,12 +115,7 @@ class SimParams():

if __name__ == "__main__":
epoch = 1531152114
#epoch = 1530729961
#iss_kep = np.array([6775,0.0002893,51.6382,211.1340,7.1114,148.9642])
#iss_kep = np.array([6786.6787,0.0003411,51.6428,263.9950,291.0075,245.8091])
iss_kep = np.array([6786.6420,0.0003456,51.6418,290.0933,266.6543,212.4306])
#6783.1714
#6786.5714
iss_kep = np.array([6785.68682,0.0003456,51.6418,290.0933,266.6543,212.430557])

params = SimParams()
params.kep = iss_kep
Expand Down
40 changes: 24 additions & 16 deletions orbitdeterminator/util/new_tle_kep_state.py
Expand Up @@ -4,7 +4,9 @@
import numpy as np
from scipy.optimize import fsolve

mu = 398600.4405
from orbitdeterminator.propagation.cowell import time_period

mu = 398600.4418

def MtoE(M,e):
"""Calculates the eccentric anomaly from the mean anomaly.
Expand Down Expand Up @@ -40,19 +42,16 @@ def EtoT(E,e):
def MtoT(M,e):
return EtoT(MtoE(M,e),e)

def ntoa(n,i):
T = 86400/n
i = math.radians(i)

Re = 6378.137
J2 = 1.08262668e-3
def scale(s,T):
s = np.ravel(s)
tmp = np.empty(6)

B = 3*J2*Re**2*(8*math.sin(i)**2-6)/4
t = lambda a: T - 2*math.pi*(a**3/mu)**0.5*(1+B/a**2)
a0 = (mu*(T/2/math.pi)**2)**(1/3)
a = fsolve(t,a0)[0]
def f(x):
tmp[0:3] = np.multiply(x,s[0:3])
tmp[3:6] = np.multiply(1/(x**0.5),s[3:6])
return T - time_period(tmp)

return a
return fsolve(f,1)[0]

def tle_to_state(tle):
""" This function converts from TLE elements to the position and velocity vector
Expand All @@ -73,17 +72,26 @@ def tle_to_state(tle):
"""

# unload orbital elements array

sma = ntoa(tle[5],tle[0])
T = 86400/tle[5]
sma = (mu*(T/2/math.pi)**2)**(1/3)
ecc = tle[2] # eccentricity
inc = tle[0] # inclination
argp = tle[3] # argument of perigee
raan = tle[1] # right ascension of the ascending node
tanom = MtoT(math.radians(tle[4]), ecc) # we use mean anomaly(kep(5)) and the function MtoT to compute true anomaly (tanom)
tanom = math.degrees(tanom)%360

print("SMA:",sma)
return kep_to_state(np.array([sma,ecc,inc,argp,raan,tanom]))
kep = np.array([sma,ecc,inc,argp,raan,tanom])
s = kep_to_state(kep)
x = scale(s,T) # scales sma so that time period = T

kep[0] = kep[0]*x
print("Keplerian Elements:")
print(kep)
s[0:3] = np.multiply(x,s[0:3])
s[3:6] = np.multiply(1/(x**0.5),s[3:6])

return s

def kep_to_state(kep):
""" This function converts from keplerian elements to the position and velocity vector
Expand Down