Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Combinatorics of Finite Sets #620

Merged
merged 7 commits into from
Nov 18, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions Cubical/Data/Empty/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,10 @@ isContr⊥→A : ∀ {ℓ} {A : Type ℓ} → isContr (⊥ → A)
fst isContr⊥→A ()
snd isContr⊥→A f i ()

isContrΠ⊥ : ∀ {ℓ} {A : ⊥ → Type ℓ} → isContr ((x : ⊥) → A x)
fst isContrΠ⊥ ()
snd isContrΠ⊥ f i ()

uninhabEquiv : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'}
→ (A → ⊥) → (B → ⊥) → A ≃ B
uninhabEquiv ¬a ¬b = isoToEquiv isom
Expand Down
103 changes: 2 additions & 101 deletions Cubical/Data/FinSet.agda
Original file line number Diff line number Diff line change
@@ -1,105 +1,6 @@
{-

Definition of finite sets

A set is finite if it is merely equivalent to `Fin n` for some `n`. We
can translate this to code in two ways: a truncated sigma of a nat and
an equivalence, or a sigma of a nat and a truncated equivalence. We
prove that both formulations are equivalent.

-}

{-# OPTIONS --safe #-}

module Cubical.Data.FinSet where

open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Function
open import Cubical.Foundations.Structure
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Equiv
open import Cubical.HITs.PropositionalTruncation
open import Cubical.Data.Unit
open import Cubical.Data.Nat
open import Cubical.Data.Fin
open import Cubical.Data.Sigma

private
variable
ℓ : Level
A : Type ℓ

isFinSet : Type ℓ → Type ℓ
isFinSet A = ∃[ n ∈ ℕ ] A ≃ Fin n

isProp-isFinSet : isProp (isFinSet A)
isProp-isFinSet = isPropPropTrunc

FinSet : Type (ℓ-suc ℓ)
FinSet = TypeWithStr _ isFinSet

isFinSetFin : ∀ {n} → isFinSet (Fin n)
isFinSetFin = ∣ _ , pathToEquiv refl ∣

isFinSetUnit : isFinSet Unit
isFinSetUnit = ∣ 1 , Unit≃Fin1 ∣

isFinSetΣ : Type ℓ → Type ℓ
isFinSetΣ A = Σ[ n ∈ ℕ ] ∥ A ≃ Fin n ∥

FinSetΣ : Type (ℓ-suc ℓ)
FinSetΣ = TypeWithStr _ isFinSetΣ

isProp-isFinSetΣ : isProp (isFinSetΣ A)
isProp-isFinSetΣ {A = A} (n , equivn) (m , equivm) =
Σ≡Prop (λ _ → isPropPropTrunc) n≡m
where
Fin-n≃Fin-m : ∥ Fin n ≃ Fin m ∥
Fin-n≃Fin-m = rec
isPropPropTrunc
(rec
(isPropΠ λ _ → isPropPropTrunc)
(λ hm hn → ∣ Fin n ≃⟨ invEquiv hn ⟩ A ≃⟨ hm ⟩ Fin m ■ ∣)
equivm
)
equivn

Fin-n≡Fin-m : ∥ Fin n ≡ Fin m ∥
Fin-n≡Fin-m = rec isPropPropTrunc (∣_∣ ∘ ua) Fin-n≃Fin-m

∥n≡m∥ : ∥ n ≡ m ∥
∥n≡m∥ = rec isPropPropTrunc (∣_∣ ∘ Fin-inj n m) Fin-n≡Fin-m

n≡m : n ≡ m
n≡m = rec (isSetℕ n m) (λ p → p) ∥n≡m∥

isFinSet≡isFinSetΣ : isFinSet A ≡ isFinSetΣ A
isFinSet≡isFinSetΣ {A = A} = hPropExt isProp-isFinSet isProp-isFinSetΣ to from
where
to : isFinSet A → isFinSetΣ A
to ∣ n , equiv ∣ = n , ∣ equiv ∣
to (squash p q i) = isProp-isFinSetΣ (to p) (to q) i

from : isFinSetΣ A → isFinSet A
from (n , ∣ isFinSet-A ∣) = ∣ n , isFinSet-A ∣
from (n , squash p q i) = isProp-isFinSet (from (n , p)) (from (n , q)) i

FinSet≡FinSetΣ : FinSet {ℓ} ≡ FinSetΣ
FinSet≡FinSetΣ = ua (isoToEquiv (iso to from to-from from-to))
where
to : FinSet → FinSetΣ
to (A , isFinSetA) = A , transport isFinSet≡isFinSetΣ isFinSetA

from : FinSetΣ → FinSet
from (A , isFinSetΣA) = A , transport (sym isFinSet≡isFinSetΣ) isFinSetΣA

to-from : ∀ A → to (from A) ≡ A
to-from A = Σ≡Prop (λ _ → isProp-isFinSetΣ) refl

from-to : ∀ A → from (to A) ≡ A
from-to A = Σ≡Prop (λ _ → isProp-isFinSet) refl

card : FinSet {ℓ} → ℕ
card = fst ∘ snd ∘ transport FinSet≡FinSetΣ
open import Cubical.Data.FinSet.Base public
open import Cubical.Data.FinSet.Properties public
34 changes: 34 additions & 0 deletions Cubical/Data/FinSet/Base.agda
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
{-# OPTIONS --safe #-}

module Cubical.Data.FinSet.Base where

open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Structure
open import Cubical.Foundations.Equiv

open import Cubical.HITs.PropositionalTruncation

open import Cubical.Data.Nat
open import Cubical.Data.Fin
open import Cubical.Data.Sigma

private
variable
ℓ : Level
A : Type ℓ

isFinSet : Type ℓ → Type ℓ
isFinSet A = ∃[ n ∈ ℕ ] A ≃ Fin n

-- finite sets are sets
isFinSet→isSet : isFinSet A → isSet A
isFinSet→isSet = rec isPropIsSet (λ (_ , p) → isOfHLevelRespectEquiv 2 (invEquiv p) isSetFin)

isPropIsFinSet : isProp (isFinSet A)
isPropIsFinSet = isPropPropTrunc

-- the type of finite sets

FinSet : (ℓ : Level) → Type (ℓ-suc ℓ)
FinSet ℓ = TypeWithStr _ isFinSet
196 changes: 196 additions & 0 deletions Cubical/Data/FinSet/Constructors.agda
Original file line number Diff line number Diff line change
@@ -0,0 +1,196 @@
{-

Closure properties of FinSet under several type constructors.

-}
{-# OPTIONS --safe #-}

module Cubical.Data.FinSet.Constructors where

open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Equiv

open import Cubical.HITs.PropositionalTruncation renaming (rec to TruncRec)

open import Cubical.Data.Nat
open import Cubical.Data.Unit
open import Cubical.Data.Empty renaming (rec to EmptyRec)
open import Cubical.Data.Sum
open import Cubical.Data.Sigma

open import Cubical.Data.Fin
open import Cubical.Data.SumFin renaming (Fin to SumFin) hiding (discreteFin)
open import Cubical.Data.FinSet.Base
open import Cubical.Data.FinSet.Properties
open import Cubical.Data.FinSet.FiniteChoice

open import Cubical.Relation.Nullary

open import Cubical.Functions.Embedding
open import Cubical.Functions.Surjection

private
variable
ℓ ℓ' ℓ'' ℓ''' : Level

module _
(X : Type ℓ)(p : ≃Fin X) where

≃Fin∥∥ : ≃Fin ∥ X ∥
≃Fin∥∥ = ≃SumFin→Fin (_ , compEquiv (propTrunc≃ (≃Fin→SumFin p .snd)) (SumFin∥∥≃ _))

module _
(X : Type ℓ )(p : ≃Fin X)
(Y : Type ℓ')(q : ≃Fin Y) where

≃Fin⊎ : ≃Fin (X ⊎ Y)
≃Fin⊎ = ≃SumFin→Fin (_ , compEquiv (⊎-equiv (≃Fin→SumFin p .snd) (≃Fin→SumFin q .snd)) (SumFin⊎≃ _ _))

≃Fin× : ≃Fin (X × Y)
≃Fin× = ≃SumFin→Fin (_ , compEquiv (Σ-cong-equiv (≃Fin→SumFin p .snd) (λ _ → ≃Fin→SumFin q .snd)) (SumFin×≃ _ _))

module _
(X : Type ℓ )(p : ≃Fin X)
(Y : X → Type ℓ')(q : (x : X) → ≃Fin (Y x)) where

private
p' = ≃Fin→SumFin p

m = p' .fst
e = p' .snd

q' : (x : X) → ≃SumFin (Y x)
q' x = ≃Fin→SumFin (q x)

f : (x : X) → ℕ
f x = q' x .fst

≃SumFinΣ : ≃SumFin (Σ X Y)
≃SumFinΣ = _ ,
Σ-cong-equiv {B' = λ x → Y (invEq (p' .snd) x)} (p' .snd) (transpFamily p')
⋆ Σ-cong-equiv-snd (λ x → q' (invEq e x) .snd)
⋆ SumFinΣ≃ _ _

≃SumFinΠ : ≃SumFin ((x : X) → Y x)
≃SumFinΠ = _ ,
equivΠ {B' = λ x → Y (invEq (p' .snd) x)} (p' .snd) (transpFamily p')
⋆ equivΠCod (λ x → q' (invEq e x) .snd)
⋆ SumFinΠ≃ _ _

≃FinΣ : ≃Fin (Σ X Y)
≃FinΣ = ≃SumFin→Fin ≃SumFinΣ

≃FinΠ : ≃Fin ((x : X) → Y x)
≃FinΠ = ≃SumFin→Fin ≃SumFinΠ

module _
(X : FinSet ℓ)
(Y : X .fst → FinSet ℓ') where

isFinSetΣ : isFinSet (Σ (X .fst) (λ x → Y x .fst))
isFinSetΣ =
elim2 (λ _ _ → isPropIsFinSet {A = Σ (X .fst) (λ x → Y x .fst)})
(λ p q → ∣ ≃FinΣ (X .fst) p (λ x → Y x .fst) q ∣)
(X .snd) (choice X (λ x → ≃Fin (Y x .fst)) (λ x → Y x .snd))

isFinSetΠ : isFinSet ((x : X .fst) → Y x .fst)
isFinSetΠ =
elim2 (λ _ _ → isPropIsFinSet {A = ((x : X .fst) → Y x .fst)})
(λ p q → ∣ ≃FinΠ (X .fst) p (λ x → Y x .fst) q ∣)
(X .snd) (choice X (λ x → ≃Fin (Y x .fst)) (λ x → Y x .snd))

module _
(X : FinSet ℓ)
(Y : X .fst → FinSet ℓ')
(Z : (x : X .fst) → Y x .fst → FinSet ℓ'') where

isFinSetΠ2 : isFinSet ((x : X .fst) → (y : Y x .fst) → Z x y .fst)
isFinSetΠ2 = isFinSetΠ X (λ x → _ , isFinSetΠ (Y x) (Z x))

module _
(X : FinSet ℓ)
(Y : X .fst → FinSet ℓ')
(Z : (x : X .fst) → Y x .fst → FinSet ℓ'')
(W : (x : X .fst) → (y : Y x .fst) → Z x y .fst → FinSet ℓ''') where

isFinSetΠ3 : isFinSet ((x : X .fst) → (y : Y x .fst) → (z : Z x y .fst) → W x y z .fst)
isFinSetΠ3 = isFinSetΠ X (λ x → _ , isFinSetΠ2 (Y x) (Z x) (W x))

module _
(X : FinSet ℓ) where

isFinSet≡ : (a b : X .fst) → isFinSet (a ≡ b)
isFinSet≡ a b = isDecProp→isFinSet (isFinSet→isSet (X .snd) a b) (isFinSet→Discrete (X .snd) a b)

isFinSetIsContr : isFinSet (isContr (X .fst))
isFinSetIsContr = isFinSetΣ X (λ x → _ , (isFinSetΠ X (λ y → _ , isFinSet≡ x y)))

isFinSet∥∥ : isFinSet ∥ X .fst ∥
isFinSet∥∥ = TruncRec isPropIsFinSet (λ p → ∣ ≃Fin∥∥ (X .fst) p ∣) (X .snd)

module _
(X : FinSet ℓ )
(Y : FinSet ℓ')
(f : X .fst → Y .fst) where

isFinSetFiber : (y : Y .fst) → isFinSet (fiber f y)
isFinSetFiber y = isFinSetΣ X (λ x → _ , isFinSet≡ Y (f x) y)

isFinSetIsEquiv : isFinSet (isEquiv f)
isFinSetIsEquiv =
EquivPresIsFinSet
(invEquiv (isEquiv≃isEquiv' f))
(isFinSetΠ Y (λ y → _ , isFinSetIsContr (_ , isFinSetFiber y)))

module _
(X : FinSet ℓ )
(Y : FinSet ℓ') where

isFinSet⊎ : isFinSet (X .fst ⊎ Y .fst)
isFinSet⊎ = elim2 (λ _ _ → isPropIsFinSet) (λ p q → ∣ ≃Fin⊎ (X .fst) p (Y .fst) q ∣) (X .snd) (Y .snd)

isFinSet× : isFinSet (X .fst × Y .fst)
isFinSet× = elim2 (λ _ _ → isPropIsFinSet) (λ p q → ∣ ≃Fin× (X .fst) p (Y .fst) q ∣) (X .snd) (Y .snd)

isFinSet→ : isFinSet (X .fst → Y .fst)
isFinSet→ = isFinSetΠ X (λ _ → Y)

isFinSet≃ : isFinSet (X .fst ≃ Y .fst)
isFinSet≃ = isFinSetΣ (_ , isFinSet→) (λ f → _ , isFinSetIsEquiv X Y f)

module _
(X : FinSet ℓ) where

isFinSet¬ : isFinSet (¬ (X .fst))
isFinSet¬ = isFinSet→ X (⊥ , ∣ 0 , uninhabEquiv (λ x → x) ¬Fin0 ∣)

module _
(X : FinSet ℓ) where

isFinSetNonEmpty : isFinSet (NonEmpty (X .fst))
isFinSetNonEmpty = isFinSet¬ (_ , isFinSet¬ X)

module _
(X : FinSet ℓ )
(Y : FinSet ℓ')
(f : X .fst → Y .fst) where

isFinSetIsEmbedding : isFinSet (isEmbedding f)
isFinSetIsEmbedding =
isFinSetΠ2 X (λ _ → X)
(λ a b → _ , isFinSetIsEquiv (_ , isFinSet≡ X a b) (_ , isFinSet≡ Y (f a) (f b)) (cong f))

isFinSetIsSurjection : isFinSet (isSurjection f)
isFinSetIsSurjection =
isFinSetΠ Y (λ y → _ , isFinSet∥∥ (_ , isFinSetFiber X Y f y))

module _
(X : FinSet ℓ )
(Y : FinSet ℓ') where

isFinSet↪ : isFinSet (X .fst ↪ Y .fst)
isFinSet↪ = isFinSetΣ (_ , isFinSet→ X Y) (λ f → _ , isFinSetIsEmbedding X Y f)

isFinSet↠ : isFinSet (X .fst ↠ Y .fst)
isFinSet↠ = isFinSetΣ (_ , isFinSet→ X Y) (λ f → _ , isFinSetIsSurjection X Y f)
Loading