Skip to content

alanliska/PHREEQC-plus

Repository files navigation

PHREEQC-plus

PHREEQC + OpenMOPAC + CHEMSOL + XTB + DFTB+ + FastChem Cond and more

Description & Use: PHREEQC (authors: David L. Parkhurst, C.A.J. Appelo) is a favourite geochemical code used for speciation modelling. Our application brings the users the experience of extending capabilities due to integration of MOPAC (author: James JP Stewart), CHEMSOL (authors: Jan Florián, Arieh Warshel), XTB (authors: C. Bannwarth, E. Caldeweyher, S. Ehlert, A. Hansen, P. Pracht, J. Seibert, S. Spicher, S. Grimme, P. Shushkov, M. Stahn, H. Neugebauer, J.-M. Mewes, V. Asgeirsson, C. Bauer, J. Koopman) and DFTB+ (authors: B. Hourahine, B. Aradi, V. Blum, F. Bonafé, A. Buccheri, C. Camacho, C. Cevallos, M. Y. Deshaye, T. Dumitrică, A. Dominguez, S. Ehlert, M. Elstner, T. van der Heide, J. Hermann, S. Irle, J. J. Kranz, C. Köhler, T. Kowalczyk, T. Kubař, I. S. Lee, V. Lutsker, R. J. Maurer, S. K. Min, I. Mitchell, C. Negre, T. A. Niehaus, A. M. N. Niklasson, A. J. Page, A. Pecchia, G. Penazzi, M. P. Persson, J. Řezáč, C. G. Sánchez, M. Sternberg, M. Stöhr, F. Stuckenberg, A. Tkatchenko, V. W.-z. Yu, T. Frauenheim). Any custom species not present in the built-in databases can be now calculated directly within the app and the results used in the model (in other words, a new, specific database can be constructed in each run separately). Furthermore, the current package contains numerous non-conventional databases utilizing both experimental as well as predicted / calculated data from big databases such as CHNOSZ, ModelSEED, Alexandria library, KEGG and other literal sources. Except from the equilibrium state, the code supports also kinetics modelling, for which the respective keyword blocks can be generated automatically based on the previous transitional state computation. As an alternative for non-aqueous systems, FastChem Cond speciation modelling is available as well. All the programs features are available offline.

Warning about the computational accuracy: MOPAC represents a reasonable compromis between power of the device/calculation time and prediction accuracy for large variety of compound types ranging from small to mid-sized molecules. However, the accuracy is limited. In order to tune the resulting energies, COSMO model from MOPAC as well as CHEMSOL solvation models are integrated, although CHEMSOL is originally intented to be used in connection with the structures and charges calculated at higher levels of theory. Therefore, all the calculated equilibrium and rate constants should be treated with caution and regarded as a rough estimate in cases when no experimental data (from the included databases) are available. XTB and DFTB+ integration is experimental so far.

IMPORTANT !!! Although this app is composed of open-source codes and resources, licenses for some components require the users to cite the original references when publishing the results. Please check all the licensing information under the buttons 'License' and 'About the app'. All the users of the PHREEQC PLUS app comply by downloading, installing and using it with all the licensing conditions of the individual software components and take the responsibility for keeping them.

The software has not received any approval by the U.S. Geological Survey (USGS). No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. The software is provided on the condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the software.

License: The PHREEQC plus app repository (except from the binary content in /app/src/main/jniLibs/) itself is covered by GPL3 license. However, the included third-party software as well as the corresponding documentation retains the original licenses - please see the individual entries below. App source code: https://github.com/alanliska/PHREEQC-plus

Contact: Compilation of the source code for Android as well as the Android app development was done by Alan Liška (alan.liska@jh-inst.cas.cz) and Veronika Růžičková (sucha.ver@gmail.com), J. Heyrovský Institute of Physical Chemistry of the CAS, v.v.i., Dolejškova 3/2155, 182 23 Praha 8, Czech Republic. Website: http://www.jh-inst.cas.cz/~liska/MobileChemistry.htm

List of used third-party software: ACPDFVIEW, ANDROID SHELL, BLAS, CHEMSOL, DFTB+, DFTD4, FASTCHEM Cond, GMP, GRAPHVIEW, LAPACK, MCTC-LIB, MOPAC, MSTORE, MULTICHARGE, OPENBABEL, OPENBLAS, OPENMOPAC, OPSIN, PHREEQC, PLOTMS, PYTHON, QCXMS, S-DFTD3, STDA, TBLITE, TEST-DRIVE, TOML-F, TRANSPOSE, X11-BASIC, XTB, XTB4STDA.

More info on licenses & references - please refer to the licensing information inside of the app.

==================================================================================================

Licenses and references to used third-party software:

  • ACPDFVIEW Author: Bhuvaneshw (Github) Source code: https://github.com/Bhuvaneshw/acpdfview License: GNU GPL-3.0

  • ANDROID SHELL Author: Jorrit "Chainfire" Jongma (JRummy Apps Inc.) Source code: https://github.com/aa668086/android-shell-master License: Apache License, Version 2.0

  • ARPACK Authors: D.C. Sorensen, R.B. Lehoucq, C. Yang, and K. Maschhoff; Allan Cornet, Sylvestre Ledru; Jordi Gutiérrez Hermoso; Sébastien Fabbro Source code: https://github.com/opencollab/arpack-ng License: BSD Software License

  • BLAS Source code: https://netlib.org/blas/ License: freely-available software package

  • CHEMSOL Authors: Jan Florián, Arieh Warshel Ref.: Florián, J., and A. Warshel. "ChemSol, version 2.1." University of Southern California, Los Angeles (1999). Source code: https://github.com/jborden/ChemSol License: The Android binary distribution is published as freeware at Mobile Chemistry Portal and Google Play Store with kind permission of Jan Florián.

  • CHIMESCALC Authors: Rebecca K. Lindsey, Nir Goldman, Laurence E. Fried References: -Carbon-1: R.K. Lindsey*, L.E. Fried, N. Goldman, J. Chem. Theory Comput., 13 6222 (2017). -PuH-DFTB: Goldman*, B. Aradi, R.K. Lindsey, L.E. Fried, J. Chem. Theory Comput. 14 2652 (2018). -Water-1: R.K. Lindsey*, L.E. Fried, N. Goldman, J. Chem. Theory Comput. 15 436 (2019). -CO-1: R.K. Lindsey*, N. Goldman, L.E. Fried, S. Bastea, J. Chem. Phys. 153 054103 (2020). -CO-2: R.K. Lindsey*, L.E. Fried, N. Goldman, S. Bastea, J. Chem. Phys. 153 134117 (2020). -COND-1: M.R. Armstrong*, R.K. Lindsey*, N. Goldman, M.H. Nielsen, E. Stavrou, L.E. Fried, J.M. Zaug, S. Bastea*, Nat, Commun. 11 353 (2020). -HN-1: Pham*, R.K. Lindsey, L.E. Fried, N. Goldman, J. Chem. Phys. 153 224102 (2020). -DNTF-DFTB: R.K. Lindsey*, S. Bastea*, N. Goldman, L. Fried, J. Chem. Phys. 154 164115 (2021). -TiH-DFTB: Goldman*, K. Kweon, R.K. Lindsey, L.E. Fried, T.W. Heo, B. Sadigh, P. Soderlind, A. Landa, A. Perron, J. Jeffries, B. Wood, J. Chem. Theory Comput. 17 4435 (2021). -QMD-DFTB: C.H. Pham*, R.K. Lindsey, L.E. Fried, N. Goldman, J. Phys. Chem. Lett. 13 2934 (2022). Source code: https://github.com/rk-lindsey/chimes_calculator License: LGPL-3.0

  • CPCM-X Authors/contributors: Marcel Stahn, Sebastian Ehlert, "Albkat" (GitHub) Ref.: M. Stahn, S. Ehlert, S. Grimme, J. Phys. Chem. A, 2023, XX, XXXX-XXXX. DOI: 10.1021/acs.jpca.3c04382 Source code: https://github.com/grimme-lab/CPCM-X License: GNU GPL-3.0

  • DFTB+ Authors: B. Hourahine, B. Aradi, V. Blum, F. Bonafé, A. Buccheri, C. Camacho, C. Cevallos, M. Y. Deshaye, T. Dumitrică, A. Dominguez, S. Ehlert, M. Elstner, T. van der Heide, J. Hermann, S. Irle, J. J. Kranz, C. Köhler, T. Kowalczyk, T. Kubař, I. S. Lee, V. Lutsker, R. J. Maurer, S. K. Min, I. Mitchell, C. Negre, T. A. Niehaus, A. M. N. Niklasson, A. J. Page, A. Pecchia, G. Penazzi, M. P. Persson, J. Řezáč, C. G. Sánchez, M. Sternberg, M. Stöhr, F. Stuckenberg, A. Tkatchenko, V. W.-z. Yu, T. Frauenheim Ref.: DFTB+, a software package for efficient approximate density functional theory based atomistic simulations; J. Chem. Phys. 152, 124101 (2020). -DFTB+ code: B. Aradi, B. Hourahine, and Th. Frauenheim. DFTB+, a sparse matrix-based implementation of the DFTB method. J. Phys. Chem. A, 111(26):5678, 2007. 65, 131. -non-SCC DFTB: D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, and R. Kaschner. Construction of tightbinding-like potentials on the basis of density-functional theory: Application to carbon. Phys. Rev. B, 51:12947, 1995. 131. G. Seifert, D. Porezag, and T. Frauenheim. Calculations of molecules, clusters, and solids with a simplified LCAO-DFT-LDA scheme. Int. J. Quant. Chem., 58:185, 1996. 131. -SCC DFTB: M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, and G. Seifert. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B, 58:7260, 1998. 54, 131. -Collinear spin polarization: C. Köhler, G. Seifert, and T. Frauenheim. Density-functional based calculations for Fe(n),(n<=32). Chem. Phys., 309:23, 2005. 131. -Non-collinear spin polarization, Spin orbit coupling: C. Köhler, T. Frauenheim, B. Hourahine, G. Seifert, and M. Sternberg. Treatment of collinear and noncollinear electron spin within an approximate density functional based method. J. Phys. Chem. A, 111(26):5622, 2007. 131. -QM/MM coupling (external charges): Q. Cui, M. Elstner, T. Frauenheim, E. Kaxiras, and M. Karplus. Combined self-consistent charge density functional tight-binding (SCC-DFTB) and CHARMM. J. Phys. Chem. B, 105:569, 2001. 131. W. Han, M. Elstner, K. J. Jalkanen, T. Frauenheim, and S. Suhai. Hybrid SCC-DFTB/molecular mechanical studies of H-bonded systems and of N-acetyl-(L-Ala)n-N’-Methylamide helices in water solution. Int. J. Quant. Chem., 78:459, 2000. 131. -Van der Waals interaction (dispersion): M. Elstner, P. Hobza, T. Frauenheim, S. Suhai, and E. Kaxiras. Hydrogen bonding and stacking interactions of nucleic acid base pairs: a density-functional-theory based treatment. J. Chem. Phys., 114:5149, 2001. 45, 46, 47, 123, 131. -DFTB+U: B. Hourahine, S. Sanna, B. Aradi, C. Köhler, T. Niehaus, and Th. Frauenheim. Self-interaction and strong correlation in DFTB. J. Phys. Chem. A, 111(26):5671, 2007. 42, 131. -3rd order corrections: Y. Yang, H. Yu, D. York, Q. Cui, and M. Elstner. Extension of the self-consistent-charge density-functional tight-binding method: Third-order expansion of the density functional theory total energy and introduction of a modified effective coulomb interaction. J. Phys. Chem. A, 111:10861, 2007. 49, 50, 131. -Linear response TD-DFTB: T. A. Niehaus, S. Suhai, F. Della Sala, P Lugli, M. Elstner, G. Seifert, and Th. Frauenheim. Tight-binding approach to time-dependent density-functional response theory. Phys. Rev. B, 63:085108, 2001. 59, 131. Source code: https://github.com/dftbplus/dftbplus License: GNU Lesser General Public License v3 Slater-Koster files: Creative Commons Attribution-ShareAlike 4.0 International license (for authors and references to individual sets, please see the License/LICENSING TERMS-SLATER-KOSTER-FILES, or check their homepage https://dftb.org/parameters/download/all-sk-files). For easier work in the mobile devices, all the Slater-Koster files are merged in one folder 'sk_files' and their type is distinguished in the name of the middle-separator, e.g. '-3ob-', '-mio-' etc. Please be aware that in any case of using the results for publication purposes, the authors and their works specified in the corresponding Slater-Koster file set have to be cited properly. The license permits use of their work only under the condition that their proper citing is enforced. Recipes: This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

  • DFTD4 Authors: Eike Caldeweyher, Christoph Bannwarth, Stefan Grimme, Sebastian Ehlert, Andreas Hansen, Hagen Neugebauer, Sebastian Spicher, Jan-Michael Mewes Ref.: Eike Caldeweyher, Christoph Bannwarth and Stefan Grimme, J. Chem. Phys., 2017, 147, 034112. DOI: 10.1063/1.4993215 Eike Caldeweyher, Sebastian Ehlert, Andreas Hansen, Hagen Neugebauer, Sebastian Spicher, Christoph Bannwarth and Stefan Grimme, J. Chem Phys, 2019, 150, 154122. DOI: 10.1063/1.5090222 chemrxiv: 10.26434/chemrxiv.7430216 Eike Caldeweyher, Jan-Michael Mewes, Sebastian Ehlert and Stefan Grimme, Phys. Chem. Chem. Phys., 2020, 22, 8499-8512. DOI: 10.1039/D0CP00502A chemrxiv: 10.26434/chemrxiv.10299428 Source code: https://github.com/dftd4/dftd4 License: GNU GPL v3 and GNU LGPL v3

  • DOCS (XTB) Taken from: https://xtb-docs.readthedocs.io/en/latest/contents.html License: This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0). To view a copy of this license, visit creative commons or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

  • EIGEN3 Authors: Benoît Jacob, Gaël Guennebaud and many others (please check the homepage https://eigen.tuxfamily.org/index.php?title=Main_Page) Source code: https://eigen.tuxfamily.org/index.php?title=Main_Page License: MPL2, earlier versions LGPL3+

  • FASTCHEM Authors: Daniel Kitzmann, Joachim Stock References: Stock, J. W., Kitzmann, D., Patzer, A. B. C., Sedlmayr, E.: FastChem: A computer program for efficient complex chemical equilibrium calculations in the neutral/ionized gas phase with applications to stellar and planetary atmospheres. Monthly Notices of the Royal Astronomical Society, 479(1) (2018) 865-874. Stock, J. W., Kitzmann, D., & Patzer, A. B. C.: FastChem 2: An improved computer program to determine the gas-phase chemical equilibrium composition for arbitrary element distributions. Monthly Notices of the Royal Astronomical Society, 517(3) (2022) 4070-4080. Kitzmann, D., Stock, J.W., Patzer, A.B.: FastChem Cond: Equilibrium chemistry with condensation and rainout for cool planetary and stellar environments. arXiv preprint arXiv:2309.02337. 2023 Sep 5. Source code: https://github.com/exoclime/FastChem License: This project is Copyright (c) Daniel Kitzmann and Joachim Stock. FastChem is released under the GNU Public Licence (GPL) 3.0. That means, it can be freely copied, edited, and re-distributed. If the code is re-distributed it has to be released under at least a GPL 3.0 licence as well. The full licence of FastChem can be found in the repository licence.md file or under https://www.gnu.org/licenses/gpl-3.0.html. The user guide is released under the Creative Commons Licence (CC BY SA). Licensees may copy and distribute the work and make derivative works based on it only if they give the authors (Daniel Kitzmann & Joachim Stock) the credits by providing a reference to the original guide and this GitHub repository. Licensees may also distribute derivative works only under a license identical to ("not more restrictive than") the license that governs the original work.

  • GBSA parameters Authors/contributors: please see XTB for authors and references Source code: https://github.com/grimme-lab/gbsa-parameters License: Attribution-ShareAlike 4.0 International

  • GMP Contributors: please see the page https://gmplib.org/manual/Contributors Source code: https://gmplib.org/ License: GNU LGPL v3 and GNU GPL v2

  • GRAPHVIEW Author: Jonas Gehring Source code: https://github.com/jjoe64/GraphView License: Apache License, Version 2.0

  • LAPACK Source code: https://netlib.org/lapack/ License: freely-available software package, modified BSD license

  • MBD Authors: J. Hermann, M. Stöhr, S. Góger, S. Chaudhuri, B. Aradi, R. J. Maurer, A. Tkatchenko Ref.: J. Hermann, M. Stöhr, S. Góger, S. Chaudhuri, B. Aradi, R. J. Maurer & A. Tkatchenko. J. Chem. Phys. 159, 174802 (2023). Source code: https://github.com/libmbd/libmbd License: MPL-2.0

  • MCTC-LIB Authors/contributors: Sebastian Ehlert, Eisuke Kawashima, Marcel Stahn, Kjell Jorner and others (please see the source code page) Source code: https://github.com/grimme-lab/mctc-lib License: Apache v2

  • MOPAC Author: James JP Stewart Ref.: Stewart, James J.P., Journal of computer-aided molecular design 4(1) (1990) 1-103. Source code: http://openmopac.net/ License: LGPL3 license, GPL3 license

  • MSTORE Authors/contributors: Sebastian Ehlert, Kjell Jorner, Eisuke Kawashima Source code: https://github.com/grimme-lab/mstore License: Apache v2

  • MULTICHARGE Authors/contributors: Sebastian Ehlert, Eisuke Kawashima, Daniel Mejia-Rodriguez, Kjell Jorner Source code: https://github.com/grimme-lab/multicharge License: Apache v2

  • NUMSA Authors/contributors: Marcel Stahn, Sebastian Ehlert References: Angular integration grids: V.I. Lebedev, and D.N. Laikov, A quadrature formula for the sphere of the 131st algebraic order of accuracy, Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477–481. Smooth numerical integration: W. Im, M.S. Lee, and C.L. Brooks III, Generalized Born model with a simple smoothing function, J. Comput. Chem., Vol. 24, No. 14, 2003, pp. 1691–1702. DFT-D3 van-der-Waals radii: S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys., Vol. 132, 2010, p. 154104. Bondi van-der-Waals radii: M. Mantina, A.C. Chamberlin, R. Valero, C.J. Cramer, and D.G. Truhlar, Consistent van der Waals Radii for the Whole Main Group, J. Phys. Chem. A, Vol. 113, No. 19, 2009, pp.. 5806–5812. Source code: https://github.com/grimme-lab/numsa License: LGPL3 license, GPL3 license

  • OPENBABEL Ref.: N M O'Boyle, M Banck, C A James, C Morley, T Vandermeersch, and G R Hutchison. "Open Babel: An open chemical toolbox." J. Cheminf. (2011), 3, 33. DOI:10.1186/1758-2946-3-33 Source code: http://openbabel.org/wiki/Main_Page, https://github.com/openbabel/openbabel License: GPL-2.0

  • OPENBLAS Authors: Zhang Xianyi, Wang Qian, Zaheer Chothia Ref.: Xianyi, Z., Qian, W., & Chothia, Z. (2012). OpenBLAS. URL: http://xianyi. github. io/OpenBLAS, 88. Source code: https://github.com/xianyi/OpenBLAS License: BSD3-Clause

  • OPENMOPAC Ref.: see MOPAC Developers: Jonathan E. Moussa, Susi Lehtola, Sina Mostafanejad, Karl-Michael Schindler, Jan Rezac, Sebastian Ehlert License: LGPL-3.0, GPL-3.0

  • OPSIN Authors/developers: Rich Apodaca, Albina Asadulina, Peter Corbett, Daniel Lowe (Current maintainer), John Mayfield, Peter Murray-Rust, Noel O'Boyle, Mark Williamson Ref.: Lowe, Daniel M., Peter T. Corbett, Peter Murray-Rust, and Robert C. Glen. "Chemical name to structure: OPSIN, an open source solution." (2011): 739-753. Source code: https://github.com/dan2097/opsin License: MIT License

  • PHREEQC Authors: David L. Parkhurst, C.A.J. Appelo Ref.: Parkhurst, D.L., and Appelo, C.A.J., 2013, Description of input and examples for PHREEQC version 3—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Techniques and Methods, book 6, chap. A43, 497 p. Source code: https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/ Usage: Public Domain

  • PLOTMS Authors/contributors: Jeroen Koopman, Johannes Gorges, Sebastian Ehlert and others (please see the source code page) Source code: https://github.com/qcxms/PlotMS License: GNU GPL v3 and GNU LGPL v3

  • PYTHON Source code: https://www.python.org/downloads/source/ License: PSF license agreement, check the homepage https://docs.python.org/3.7/license.html for details

  • QCXMS Authors/contributors: Jeroen Koopman, Sebastian Ehlert, Johannes Gorges Ref.: S. Grimme, Towards First Principles Calculation of Electron Impact Mass Spectra of Molecules. Angew. Chem. Int. Ed., 52, 6306-6312 DOI:10.1002/anie.201300158 Source code: https://github.com/qcxms/QCxMS License: GNU GPL v3 and GNU LGPL v3

  • S-DFTD3 Authors/contributors: Sebastian Ehlert, Robert Cohn, Eisuke Kawashima, Shirong Wang, Kjell Jorner and others (please see the source code page) Ref.: S. Grimme, J. Antony, S. Ehrlich and H. Krieg J. Chem. Phys, 132 (2010), 154104. S. Grimme, S. Ehrlich and L. Goerigk J. Comput. Chem, 32 (2011), 1456-1465. Source code: https://github.com/dftd3/simple-dftd3 License: GNU GPL v3 and GNU LGPL v3

  • STDA Authors/contributors: Marc de Wergifosse, Shoubhik Maiti, Pierre Beaujean, Sebastian Ehlert and others (please see the source code page) Ref: S. Grimme, A simplified Tamm–Dancoff density functional approach for the electronic excitation spectra of very large molecules, J. Chem. Phys., 2013, 138, 244104. DOI: 10.1063/1.4811331 C. Bannwarth, S. Grimme, A simplified time-dependent density functional theory approach for electronic ultraviolet and circular dichroism spectra of very large molecules, Comput. Theor. Chem., 2014, 1040 – 1041, 45 – 53. DOI: 10.1016/j.comptc.2014.02.023 S. Grimme and C. Bannwarth, Ultra-fast computation of electronic spectra for large systems by tight-binding based simplified Tamm-Dancoff approximation (sTDA-xTB) J. Chem. Phys., 2016, 145, 054103. DOI: 10.1063/1.4959605 M. de Wergifosse, C. Bannwarth, S. Grimme, A simplified spin-flip time-dependent density functional theory (SF-sTD-DFT) approach for the electronic excitation spectra of very large diradicals, J. Phys. Chem. A, 2019, 123 (27), 815–5825. DOI: 10.1021/acs.jpca.9b03176 M. de Wergifosse, S. Grimme, Nonlinear-response properties in a simplified time-dependent density functional theory (sTD-DFT) framework: Evaluation of the first hyperpolarizability, J. Chem. Phys., 2018, 149 (2), 024108. DOI: 10.1063/1.5037665 M. de Wergifosse, S. Grimme, Nonlinear-response properties in a simplified time-dependent density functional theory (sTD-DFT) framework: Evaluation of excited-state absorption spectra, J. Chem. Phys., 2019, 150, 094112. DOI: 10.1063/1.5080199 M. de Wergifosse, J. Seibert, S. Grimme, Simplified time-dependent density functional theory (sTD-DFT) for molecular optical rotation, J. Chem. Phys., 2020, 153, 084116. DOI: 10.1063/5.0020543 M. de Wergifosse, S. Grimme, A unified strategy for the chemically intuitive interpretation of molecular optical response properties, J. Chem. Theory Comput., 2020, 16 (12), 7709–7720. DOI: 10.1021/acs.jctc.0c00990 M. de Wergifosse, P. Beaujean, S. Grimme, Ultrafast evaluation of two-photon absorption with simplified time-dependent density functional theory, J. Phys. Chem. A, 2022, XX, XXXX. DOI: 10.1021/acs.jpca.2c02395 Source code: https://github.com/grimme-lab/stda License: GNU GPL v3 and GNU LGPL v3

  • TBLITE Authors/contributors: Sebastian Ehlert, Daniel Mejia-Rodriguez, Marvin Friede, Zeyuan Tang, Hagen Neugebauer, Konstantin Karandashev and others (please see the source code page) Source code: https://github.com/tblite/tblite License: GNU GPL v3 and GNU LGPL v3

  • TEST-DRIVE Authors/contributors: Sebastian Ehlert, Jeremie Vandenplas, Christopher Howard Source code: https://github.com/fortran-lang/test-drive License: Apache v2, MIT

  • TOML-F Authors/contributors: Sebastian Ehlert, Robert Cohn, Bálint Aradi, Asdrubal Lozada-Blanco, Rohit Goswami, Ben Hourahine, Emily Kahl, Daniel Mejia-Rodriguez, Kjell Jorner Source code: https://github.com/toml-f/toml-f License: Apache v2, MIT

  • TRANSPOSE Author: Dr. Alex Sheppard (alex@das-computer.co.uk) Source code: https://sourceforge.net/projects/transpose/ License: This software is released under the GPL license (GNU General Public License version 2.0 (GPLv2)).

  • X11-BASIC Author: Markus Hoffmann Source code: https://github.com/kollokollo/X11Basic License: GPL-2.0

  • XTB Authors: C. Bannwarth, E. Caldeweyher, S. Ehlert, A. Hansen, P. Pracht, J. Seibert, S. Spicher, S. Grimme, P. Shushkov, M. Stahn, H. Neugebauer, J.-M. Mewes, V. Asgeirsson, C. Bauer, J. Koopman Ref.: -General References to xtb and the implemented GFN methods: C. Bannwarth, E. Caldeweyher, S. Ehlert, A. Hansen, P. Pracht, J. Seibert, S. Spicher, S. Grimme WIREs Comput. Mol. Sci., 2020, 11, e01493. DOI: 10.1002/wcms.1493 M. de Wergifosse, P. Beaujean, S. Grimme, Ultrafast evaluation of two-photon absorption with simplified time-dependent density functional theory, J. Phys. Chem. A 2022, 126, 41, 7534–7547. DOI: 10.1021/acs.jpca.2c02395 -for GFN-xTB: S. Grimme, C. Bannwarth, P. Shushkov, J. Chem. Theory Comput., 2017, 13, 1989-2009. DOI: 10.1021/acs.jctc.7b00118 C. Bannwarth, S. Ehlert and S. Grimme., J. Chem. Theory Comput., 2019, 15, 1652-1671. DOI: 10.1021/acs.jctc.8b01176 P. Pracht, E. Caldeweyher, S. Ehlert, S. Grimme, ChemRxiv, 2019, preprint. DOI: 10.26434/chemrxiv.8326202.v1 -for GFN-FF: S. Spicher and S. Grimme, Angew. Chem. Int. Ed., 2020, 59, 15665–15673 DOI: 10.1002/anie.202004239 -for GBSA and ALPB implicit solvation: S. Ehlert, M. Stahn, S. Spicher, S. Grimme, J. Chem. Theory Comput., 2021, 17, 4250-4261 DOI: 10.1021/acs.jctc.1c00471 -for ddCOSMO and CPCM-X implicit solvation: M. Stahn, S. Ehlert, S. Grimme, J. Phys. Chem. A, 2023, XX, XXXX-XXXX. DOI: 10.1021/acs.jpca.3c04382 -for DFT-D4: E. Caldeweyher, C. Bannwarth and S. Grimme, J. Chem. Phys., 2017, 147, 034112. DOI: 10.1063/1.4993215 E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C. Bannwarth and S. Grimme, J. Chem. Phys., 2019, 150, 154122. DOI: 10.1063/1.5090222 E. Caldeweyher, J.-M. Mewes, S. Ehlert and S. Grimme, Phys. Chem. Chem. Phys., 2020, 22, 8499-8512. DOI: 10.1039/D0CP00502A -for sTDA-xTB: S. Grimme and C. Bannwarth, J. Chem. Phys., 2016, 145, 054103. DOI: 10.1063/1.4959605 -in the mass-spec context: V. Asgeirsson, C. Bauer and S. Grimme, Chem. Sci., 2017, 8, 4879. DOI: 10.1039/c7sc00601b J. Koopman and S. Grimme, ACS Omega, 2019, 4, 12, 15120-15133. DOI: 10.1021/acsomega.9b02011 J. Koopman and S. Grimme, J. Am. Soc. Mass Spectrom., 2021, 32, 7, 1735-1751. DOI: 10.1021/jasms.1c00098 -for metadynamics refer to: S. Grimme, J. Chem. Theory Comput., 2019, 155, 2847-2862. DOI: 10.1021/acs.jctc.9b00143 -for SPH calculations refer to: S. Spicher and S. Grimme, J. Chem. Theory Comput., 2021, 17, 1701–1714. DOI: 10.1021/acs.jctc.0c01306 -for ONIOM refer to: C. Plett, A. Katbashev, S. Ehlert, S. Grimme, M. Bursch, Phys. Chem. Chem. Phys., 2023, 25, 17860-17868. DOI: 10.1039/D3CP02178E -for DIPRO refer to: J. Kohn, N. Gildemeister, S. Grimme, D. Fazzi, A. Hansen, J. Chem. Phys., 2023, just accepted. -for PTB refer to: S. Grimme, M. Mueller, A. Hansen, J. Chem. Phys., 2023, 158, 124111. DOI: 10.1063/5.0137838 -with help from (in alphabetical order) P. Atkinson, C. Bannwarth, F. Bohle, G. Brandenburg, E. Caldeweyher, M. Checinski, S. Dohm, S. Ehlert, S. Ehrlich, I. Gerasimov, C. Hölzer, A. Katbashev, J. Kohn, J. Koopman, C. Lavigne, S. Lehtola, F. März, M. Müller, F. Musil, H. Neugebauer, J. Pisarek, C. Plett, P. Pracht, F. Pultar, J. Seibert, P. Shushkov, S. Spicher, M. Stahn, M. Steiner, T. Strunk, J. Stückrath, T. Rose, and J. Unsleber Source code: https://github.com/grimme-lab/xtb License: GNU GPL v3 and GNU LGPL v3

  • XTB4STDA Authors/contributors: Sebastian Ehlert, Pierre Beaujean, Shoubhik Maiti, Jonathon Vandezande Ref.: S. Grimme and C. Bannwarth, J. Chem. Phys., 2016, 145, 054103. DOI: 10.1063/1.4959605 Source code: https://github.com/grimme-lab/xtb4stda License: GNU GPL v3 and GNU LGPL v3

Manuals:

Sources of the pre-compiled binaries:

Other references:

  • Alexandria library Ghahremanpour, M., van Maaren, P. & van der Spoel, D. The Alexandria library, a quantum-chemical database of molecular properties for force field development. Sci Data 5, 180062 (2018). https://doi.org/10.1038/sdata.2018.62

  • Analchem database Kotrlý, S., Šůcha, L., Chemické rovnováhy v analytické chemii: Tabulky a diagramy, SNTL 1988. next sources - in footnotes at the individual entries

  • Basic series of PHREEQC databases Alberty R.A., Thermodynamics of Biochemical Reactions (1st ed.), John Wiley & Sons, Hoboken, New Jersey 2003. Alberty R.A., Biochemical Thermodynamics: Applications of Mathematica, John Wiley & Sons, Hoboken, New Jersey 2006. Bard, A. J., Parsons, R., Jordan, J. (editors), Standard potentials in aqueous solution, Marcel Dekker, New York 1985. Cabani, S., Gianni, P., Mollica, V., Lepori, L., Group contributions to the thermodynamic properties of non-ionic organic solutes in dilute aqueous solution, Journal of Solution Chemistry 10(8) (1981) 563-595. John, A.D., Lange’s handbook of chemistry (Fifthenth Edition), Mc. Graw Hill Inc, New York 1999. Dolfing J., Harrison B.K., Gibbs free-energy of formation of halogenated aromatic-compounds and their potential role as electron-acceptors in anaerobic environments, Environ Sci Technol 26 (1992) 2213-2218. Dolfing J., Janssen D.B., Estimates of Gibbs free energies of formation of chlorinated aliphatic compounds, Biodegradation, 5(1) (1994) 21-28. Mobley D.L., Guthrie J.P., FreeSolv: a database of experimental and calculated hydration free energies, with input files, J Comput Aided Mol Des. 28(7) (2014) 711-20. Loach P.A., Handbook of Biochemistry and Molecular Biology: Oxidation-Reduction Potentials, Absorbance Bands and Molar Absorbance of Compounds used in Biochemical Studies (4th ed.) CRC Press 2010, pp. 557-562. Wiesinger, H., Hinz, H.J., Thermodynamic data for protein-ligand interaction. In Thermodynamic data for biochemistry and biotechnology, Springer, Berlin, Heidelberg 1986, pp. 211-226. Jankowski, M. D., Henry, C. S., Broadbelt, L. J., Hatzimanikatis, V., Group contribution method for thermodynamic analysis of complex metabolic networks, Biophysical journal, 95(3) (2008) 1487-1499. Mavrovouniotis M.L., Group contributions for estimating standard Gibbs energies of formation of biochemical-compounds in aqueous-solution, Biotechnology and Bioengineering 36 (1990) 1070-1082. Joback, K. G., Reid, R. C., Estimation of pure-component properties from group-contributions, Chemical Engineering Communications, 57(1-6) (1987) 233-243. Kanehisa, M., The KEGG database. In Novartis foundation symposium, John Wiley, Chichester, New York 1999, pp. 91-100. Klopman, G., Wang, S., Balthasar, D.M., Estimation of aqueous solubility of organic molecules by the group contribution approach. Application to the study of biodegradation, Journal of chemical information and computer sciences, 32(5) (1992) 474-482. Martell A.E., Smith R.M., Motekaitis R.J., NIST Critically Selected Stability Constants of Metal Complexes Database, 8.0. NIST: Gaithersburg, MD, 2004. Plyasunova N.V., Plyasunov A.V., Shock E.L., Database of thermodynamic properties for aqueous organic compounds, Intern. J. Thermophys., 25 (2004) 351-360. Sedlbauer, J., Ehlerova, J., Slavik, M., Establishing recommended data on thermodynamic properties of hydration for selected organic solutes and gases, http://artec.tul.cz/files/results/2011-Establishing-TPH%20data.pdf. Thauer R.K., Jungermann K., Decker K., Energy conservation in chemotrophic anaerobic bacteria, Bacteriological reviews, 41(3) (1977) 809. Atkins, P., Atkins, P.W., de Paula, J., Atkins' physical chemistry, Oxford university press 2014. Van Krevelen, D.W., Te Nijenhuis, K., Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions, Elsevier, Amsterdam, Oxford 2009. Wagman D., Evans W., Parker V., Schumm R., Halow I., Bailey S., Churney K., Nuttall R., The NBS Tables of Chemical Thermodynamic Properties, J. Phys. Chem. Ref. Data 11, (Supplement No. 2).

  • Blank databases (Database_anhydr, Database_water) Bard, A. J., Parsons, R., Jordan, J. (editors), Standard potentials in aqueous solution, Marcel Dekker, New York 1985. Florián, J., Warshel, A., ChemSol, version 2.1, University of Southern California, Los Angeles (1999).

  • Datasets I series, CHNOSZ+ModelSEED database Dick, J. M., CHNOSZ: Thermodynamic calculations and diagrams for geochemistry, Frontiers in Earth Science, 7 (2019) 180. Henry, C.S., DeJongh, M., Best, A.B., Frybarger, P.M., Linsay, B., R.L. Stevens, High-throughput Generation and Optimization of Genome-scale Metabolic Models, Nature Biotechnology (2010).

  • Datasets II series Binnewies, M., Milke, E., Thermochemical data of elements and compounds (Vol. 168), Wiley-VCH, Weinheim 2002.

  • MOPAC resources: manuals and reference data dowloaded from the OPENMOPAC Github page (https://github.com/openmopac/mopac-archive).

  • OPENBABEL resources: parameter and other files taken from the official distribution site (http://openbabel.org/wiki/Main_Page, https://github.com/openbabel/openbabel, https://sourceforge.net/projects/openbabel/).

  • PHREEQC databases distributed within the official installers - please see https://water.usgs.gov/water-resources/software/PHREEQC/index.html.

  • PHREEQC derived ("_anhydr" and "_w") databases utilizing the elemental species for connection with MOPAC/CHEMSOL estimated equilibria Florián, J., and A. Warshel. "ChemSol, version 2.1." University of Southern California, Los Angeles (1999). Bard, A. J., Parsons, R., Jordan, J. (editors), Standard potentials in aqueous solution, Marcel Dekker, New York 1985. Dick, J. M., CHNOSZ: Thermodynamic calculations and diagrams for geochemistry, Frontiers in Earth Science, 7 (2019) 180. Kobayashi, K., Suzuki T.S, Electron Comm Jpn. 2019;102:12–16. Shkol’nikov, E.V., Russian Journal of Physical Chemistry A 90(3) 2016.

  • pKa datasheet contains values taken from NIST database (Martell A.E., Smith R.M., Motekaitis R.J., NIST Critically Selected Stability Constants of Metal Complexes Database, 8.0. NIST: Gaithersburg, MD, 2004.).

  • Thermoddem database - downloaded from https://thermoddem.brgm.fr/databases/phreeqc.

  • UV-Vis spectra convolution: Tirri, Bernardino. Détermination d’un protocole de calcul pour la prédiction de spectres UV-vis de molécules en solution. Diss. Université Paris sciences et lettres, 2022.

Literature used in empirical estimations of equilibrium data Glasser, L., Jenkins, H.D.B., Standard absolute entropies, S 298, from volume or density: Part II. Organic liquids and solids, Thermochimica acta 414(2) (2004) 125-130. Hoshino, D., Nagahama, K., Hirata, M., Prediction of the entropy of vaporization at the normal boiling point by the group contribution method, Industrial & engineering chemistry fundamentals, 22(4) (1983) 430-433. Jankowski, M. D., Henry, C. S., Broadbelt, L. J., Hatzimanikatis, V., Group contribution method for thermodynamic analysis of complex metabolic networks, Biophysical journal, 95(3) (2008) 1487-1499. Joback, K. G., Reid, R. C., Estimation of pure-component properties from group-contributions, Chemical Engineering Communications, 57(1-6) (1987) 233-243. Van Krevelen, D.W., Te Nijenhuis, K., Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions, Elsevier, Amsterdam, Oxford 2009. Vohlídal, J., Julák, A., Štulík, K., Chemické a analytické tabulky, Grada Publishing, Praha 1999.

Literature used in empirical estimations of kinetics data Bodek, I., Lyman, W.J., Reehl, W.F., Rosenblatt D.H. (Eds.): Environmental Inorganic Chemistry. Properties, Processes, and Estimation Methods. Pergamon Press, New York, Oxford, Beijing, Frankfurt, Sao Paulo, Sydney, Tokyo, Toronto 1988. Eigen, M., Z. Phys. Chem. 1 (1954) 176-200. Eigen, M., Z. Electrochem. 64 (1960) 115-130. Fuoss, R.M., J. Am. Chem. Soc. 80(19) (1958) 5059-5061. Wilkins, R.G.: Kinetics and Mechanism of Reactions of Transition Metal Complexes, 2nd Edition. Wiley-VCH, Weinheim 2002. Zhou, G.Q., Zhong, W.Z., Eur. J. Biochem. 128 (1982) 383.

Literature used in proton and electron references Bartmess, J.E., Thermodynamics of the electron and the proton, The Journal of Physical Chemistry 98(25) (1994) 6420-6424. Fifen, J.J.,Thermodynamics of the electron revisited and generalized, Journal of Chemical Theory and Computation 9(7) (2013) 3165-3169. Isse, A.A., Gennaro, A., Absolute potential of the standard hydrogen electrode and the problem of interconversion of potentials in different solvents, The Journal of Physical Chemistry B 114(23) (2010) 7894-7899. Llano, J., Eriksson, L.A., First principles electrochemistry: Electrons and protons reacting as independent ions, The Journal of chemical physics 117(22) (2002) 10193-10206.

Literature and other sources of data in inorganic and organic kinetics datasheets Astin, A. V. Tables of Chemical Kinetics, Homogeneous Reactions, Suplement 1, National Bureau of Standards Circular 510; U.S. Government Printing Office: 1953. Astin, A. V. Tables of Chemical Kinetics, Homogeneous Reactions, Supplementary Tables, National Bureau of Standards Monograph 34; U.S. Government Printing Office: 1961. Astin, A. V. Tables of Chemical Kinetics, Homogeneous Reactions, Supplementary Tables; National Bureau of Standards Monograph 34 - vol. 2, U.S. Government Printing Office: 1964. Bamford, C. H.; Tipper, C. F. H. (Eds.) Comprehensive Chemical Kinetics, Decomposition of Inorganic and Organometallic Compounds, vol. 4; Elsevier Publishing Company: Amsterdam, London, New York, 1972. Bamford, C. H.; Tipper, C. F. H. (Eds.) Comprehensive Chemical Kinetics, Decomposition and Isomerization of Organic Compounds, vol.5.; Elsevier Publishing Company: Amsterdam, London, New York, 1972. Bamford, C. H.; Tipper, C. F. H. (Eds.) Comprehensive Chemical Kinetics, Reactions of Non-metallic Inorganic Compounds, vol. 6; Elsevier Publishing Company: Amsterdam, London, New York, 1972. Bamford, C.H.; Tipper, C.F.H. Comperhensive Chemical Kinetics, Vol.7 (Reactions of Metallic Salts and Complexes, and Organometallic Compounds.; Elsevier Publishing Company: Amsterdam, London, New York, 1972. Bamford, C. H.; Tipper, C. F. H. (Eds.) Comprehensive Chemical Kinetics, Addition and Elimination Reactions of Aliphatic Compounds, vol. 9; Elsevier Publishing Company: Amsterdam, London, New York, 1973. Bamford, C. H.; Tipper, C. F. H. (Eds.) Comprehensive Chemical Kinetics, Ester Formation and Hydrolysis and Related Reactions, vol. 10; Elsevier Publishing Company: Amsterdam, London, New York, 1972. Bamford, C. H.; Tipper, C. F. H. (Eds.) Comprehensive Chemical Kinetics, Electrophlic substitution at a saturated carbon atom, vol.12.; Elsevier Publishing Company: Amsterdam, London, New York, 1973. Bamford, C. H.; Tipper, C. F. H. (Eds.) Comprehensive Chemical Kinetics, Reactions of Aromatic Compounds, vol. 13; Elsevier Publishing Company: Amsterdam, London, New York, 1972. Bamford, C. H.; Tipper, C. F. H. (Eds.) Comprehensive Chemical Kinetics, Liquid Phase Oxidation, vol.16; Elsevier Publishing Company: Amsterdam, Oxford, New York, 1980. Bamford, C. H.; Tipper, C. F. H. (Eds.) Comprehensive Chemical Kinetics, Selected Elementary Reactions, vol. 18; Elsevier Publishing Company: Amsterdam, Oxford, New York, 1976. Bamford, C. H.; Tipper, C. F. H. (Eds.) Comprehensive Chemical Kinetics, Reactions in the Solid State, vol. 22; Elsevier Publishing Company: Amsterdam, Oxford, New York, 1980. Basolo, F.; Pearson, R. G. Mechanisms of Inorganic Reactions, A Study of Metal Complexes in Solution; John Wiley & Sons, Inc.: New York, 1958. Benson, D. Mechanisms of inorganic reactions in solution, An Introduction.; McGraw-Hill: London, 1968. Burgess, J.; Hague, D. N.; Kemmitt, R.D.W. Inorganic Reaction Mechanisms, vol.1.; The Chemical Society: Burlington House, London, 1971. Burgess, J.; Hague, D. N.; Kemmitt, R. D. W.; McAuley, A. Inorganic Reaction Mechanisms, vol.2.; The Chemical Society: Burlington House, London, 1972. Burgess, J.; Hague, D. N.; Kemmitt, R. D. W.; McAuley, A.; Smith, M. A. R. Inorganic Reaction Mechanisms, vol.3.; The Chemical Society: Burlington House, London, 1974. Condon, E. U. Tables of Chemical Kinetics, Homogeneous Reactions, Circular of the National Bureau of Standards 510; U.S. Government Printing Office: 1951. Edwards, J.O. Inorganic Reaction Mechanisms, Part II.; Interscience Publishers: New York, London, Sydney, Toronto, 1972. Kleinberg, J. Mechanisms of Inorganic Reactions, Advances in Chemistry Series 49. American Chemical Society, University of Kansas: Lawrence, 1964. Mark, H. B.; Rechnitz, G. A. Kinetics in Analytical Chemistry.; Interscience Publishers: New York, London, Sydney, 1968. McAuley, A.; Burgess, J.; Coe, J. S.; Hague, D. N.; Kemmitt, R. D. W.; Moore, P.; Scott, K. L.; Smith, M. A. R.; Stedman, G. Inorganic Reaction Mechanisms, vol.4.; The Chemical Society: Burlington House, London, 1976. McAuley, A.; Burgess, J.; Cannon, R. D.; Davidson, J. L.; Hague, D. N.; Lappin, A. G.; Moore, P.; Stedman, G. Inorganic Reaction Mechanisms, vol.5.; The Chemical Society: Burlington House, London, 1977. McAuley, A.; Burgess, J.; Cannon, R. D.; Davidson, J. L.; Hague, D. N.; Lappin, A. G.; Lindsell, W. E.; Moore, P.; Stedman, G. Inorganic Reaction Mechanisms, vol.6.; The Chemical Society: Burlington House, London, 1981. NDRL/NIST Solution Kinetics Database on the Web (NIST Standard Reference Database 40), 2002, https://kinetics.nist.gov/solution/(accessed Mar 2018). Palm, V. A. Tables of Rate and Equilibrium Constants of Heterolytic Organic Reactions, Vol.4.; Moscow, 1977. Palm, V. A. Tables of Rate and Equilibrium Constants of Heterolytic Organic Reactions, Vol.5.; Moscow, 1978. Palm, V. A. Tables of Rate and Equilibrium Constants of Heterolytic Organic Reactions, Vol.5(II).; Moscow, 1979. Sykes, A. G. Kinetics of Inorganic Reactions.; Pergamon Press: Oxford, London, Edinburgh, New York, Toronto, Sydney, Paris, Braunschweig, 1970. Sykes, A. G.; Burgess, J.; Buxton, G. V.; Cannon, R. D.; Deeming, A. J.; Elding, L. I.; Lappin, A. G.; McAuley, A.; Moore, P.; Stedman, G. Inorganic Reaction Mechanisms, vol.7.; The Chemical Society: Burlington House, London, 1979. van Eldik, R.; Hubbard, C. D. Advances in Inorganic Chemistry, vol. 54; Academic Press: Erlangen-Nürnberg, 2003. Washburn, E. W. International Critical Tables of Numerical Data, Physics, Chemistry and Technology, 1 Electronic Ed.; Knovel: 2003. Online version available at https://app.knovel.com/hotlink/toc/id:kpICTNDPC4/international-critical/international-critical Ahlstrom, C., Boyd, W.B., Epstein, I.R., Kustin, K., Romanow, J.H., Inorg. Chem. 23 (1984) 2185. Alamgir, M., Epstein, I.R., J. Am. Chem. Soc. 105 (1983) 2500. Alamgir, M., Epstein, I.R., J. Phys. Chem. 89 (1985) 3611. Alamgir, M., De Kepper, P., Orbán, M., Epstein, I.R., J. Am. Chem. Soc. 105 (1983) 2641. Alamgir, M., Epstein, I.R., J. Phys. Chem. 88 (1984) 2848. Alamgir, M., Orbán, M., Epstein, I.R., J. Phys. Chem. 87 (1983) 3725. Alowitz, M. J., Scherer, M.M., Environmental science & technology 36(3) (2002) 299. Appelman, E.H., Kläning, U.K., Thompson, R.C., J. Am. Chem. Soc. 101(4) (1979) 929. Babatunde, O.A., World Journal of Chemistry 3(1) (2008) 27. Bakač, A., Orhanovic, M., Inorganica Chimica Acta 21 (1977) 173. Barr, S.W., Guyer, K.L., Weaver, M.J., J. Electroanal. Chem. 111 (1980) 41. de Barros Faria, R., Epstein, I.R., Kustin, K., J. Am. Chem. Soc. 114 (1992) 7164. de Barros Faria, R., Epstein, I.R., Kustin, K., J. Phys. Chem. 96(17) (1992) 6861. de Barros Faria, R., Lengyel, I., Epstein, I.R., Kustin, K., J. Phys. Chem. 97 (1993) 1164. Benko, J., Vollárová, O., Burgess, J., López, P., Transition Metal Chemistry 25 (2000) 674. Bhattacharyya, P.K., Saini, R.D., Ruikar, P.B., International Journal of Chemical Kinetics 13(4) (1981) 385. Bingham, D., Burnett, M.G., Journal of the Chemical Society A: Inorganic, Physical, Theoretical (1970) 2165. Chiang, Y.S., Craddock, J., Mickewich, D., Turkevich, J., J. Phys. Chem. 70(11) (1966) 3509. Chimatadar, S.A., Koujalagi, S.B., Nandibewoor, S.T., Transition Metal Chemistry 27 (2002) 704. Citri, O., Epstein, I.R., J. Phys. Chem. 92 (1988) 1865. Citri, O., Epstein, I.R., J. Am. Chem. Soc. 108(3) (1986) 357. Citri, O., Epstein, I.R., J. Phys. Chem. 91 (1987) 6034. Crouse, W.C., Margerum, D.W., Inorganic Chemistry 13(6) (1974) 1437. Cornelius, R.D., Gordon, G., Inorg. Chem. 15(5) (1976) 1002. Dasgupta, M., Mahanti, M.K., Bull. Chem. Soc. Jpn. 61 (1988) 4133. Dateo, C.E., Orbán, M., De Kepper, P., Epstein, I.R., J. Am. Chem. Soc. 104 (1982) 504. De Kepper, P., Epstein, I.R., Kustin, K., Orbán, M., J. Phys. Chem. 86 (1982) 170. Deshwal, B.R., Lee, H.-K., Journal of Hazardous Materials B108 (2004) 173. Doona, C.J., Kustin, K., Orbán, M., Epstein, I.R., J. Am. Chem. Soc. 113 (1991) 7484. Doremus, R.H., Murphy, D., Bansal, N.P., Lanford, W.A., Burman, C., Journal of materials science 20 (1985) 4445. Dózsa, L., Beck, M.T., Inorganica Chimica Acta 4 (1970) 219. Dózsa, L., Szilassy, I., Beck. M.T., Inorganica Chimica Acta 23 (1977) 29. D'Ulivo, A., Onor, M., Spiniello, R., Pitzalis, E., Spectrochimica Acta Part B 63 (2008) 835. Edblom, E.C., Luo, Y., Orbán, M., Kustin, K., Epstein, I.R., J. Phys. Chem. 93 (1989) 2722. Edblom, E.C., Györgyi, L., Orbán, M., Epstein, I.R., J. Am. Chem. Soc. 109 (1987) 4876. Epstein, I.R., Kustin, K., Simoyi, R.H., J. Am. Chem. Soc. 104 (1982) 712. Epstein, I.R., Kustin, K., J. Phys. Chem. 89 (1985) 2275. Epstein, I.R., Kustin, K., J. Phys. Chem. 96 (1992) 5852. Epstein, I.R., Kustin, K., Simoyi, R.H., J. Phys. Chem. 96 (1992) 6326. Espenson, J.H., Helzer, S.R., Inorg. Chem. 8(5) (1969) 1051. Fowless, A.D., Stranks, D.R., Inorganic Chemistry 16(6) (1977) 1282. Furman, C.S., Margerum, D.W., Inorg. Chem. 37 (1998) 4321. Galwey, A.K., Mansour, S.A.A., Thermochimica Acta 228 (1993) 379. Gerritsen, C.M., Margerum, D.W., Inorg. Chem. 29 (1990) 2757. Gordon, G., Tachlyashiki, S., Environ. Sci. Technol. 25 (1991) 468. Grant, J.L., De Kepper, P., Epstein, I.R., Kustin, K., Orbán, M., Inorg. Chem. 21 (1982) 2192. Gupta, Y.K., Bhargava, A.P., Bulletin of the Chemical Society of Japan 38(1) (1965) 12. Gupta, K.S., Bhargava, P., Manoj, S.V., Transition Metal Chemistry 25 (2000) 274. Hicks, K.W., Sutter, J.R., J. Phys. Chem. 75(8) (1971) 1107. Horváth, A.K., J. Phys. Chem. A 111 (2007) 890. Iadevia, R., Earley, J.E., Inorganica Chimica Acta 53 (1981) L143. Irving, H., Nature 173 (1954) 670. Jacobsen, F., Holcman, J., Sehested, K., International journal of chemical kinetics 30(3) (1998) 207. Jia-Zhong, Z., Whitfield, M., Marine Chemistry 19 (1986) 121. Jordan, A.D., Scott, S.L., Jordan, R.B., Inorganica Chimica Acta 239 (1995) 99. Karavanova, Y.A., Stenina, I.A., Yaroslavtsev, A.B., Russian Journal of Inorganic Chemistry 54(7) (2009) 995. Kerezsi, I., Lente, G., Fábián, I., Dalton Trans. (2004) 342. Kimmel, H.S., Cusumano, J.P., Lambert, D.G., Journal of solid state chemistry 12 (1975) 110. Kirschenbaum, L.J., Sutter, J.R., J. Phys. Chem. 70(12) (1966) 3863. Kjaer, A.M., Ulstrup, J., Inorg. Chem. 21 (1982) 3490. Kovacs, K., Leda, M., Vanag, V.K., Epstein, I.R., Physica D 239 (2010) 757. Lawani, S.A., J. Phys. Chem. 80(2) (1976) 105. Lawani, S.A., Sutter, J.R., J. Phys. Chem. 77(12) (1973) 1547. Legrand, L., El Figuigui, A., Mercier, F., Chausse, A., Environ. Sci. Technol. 38 (2004) 4587. Lengyel, I., Li, J., Epstein, I.R., J. Phys. Chem. 96 (1992) 7032. Lengyel, I., Rábai, G., Epstein, I.R., J. Am. Chem. Soc. 112 (1990) 4606. Lente, G., Kalmár, J., Baranyai, Z., Kun, A., Kék, I., Bajusz, D., Takács, M., Veres, L., Fábán, I., Inorg. Chem. 48 (2009) 1763. Levanov, A.V., Kuskov, I.V., Antipenko, E.E., Lunin, V.V., Russian Journal of Physical Chemistry 80(5) (2006) 726. Lister, M.W., Yoshino, Y., Can. J. Chem. 39 (1961) 96. Lister, M.W., Yoshino, Y., Can. J. Chem. 38 (1960) 2342. Liu, K.J., Lester, H., Peterson, N.C., Inorg. Chem. 5(12) (1966) 2129. Luna, R.M., Lapidus, G.T., Hydrometallurgy 56 (2000) 171. Luo, Y., Epstein, I.R., J. AM. Chem. Soc. 113 (1991) 1518. Luo, Y., Kustin, K., Epstein, I.R., Inorg. Chem. 27 (1988) 2489. Maruthamuthu, P., Neta, P., J. Phys. Chem. 82(6) (1978) 710. Maselko, J., Epstein, I.R., J. Phys. Chem. 88 (1984) 5305. Melicherčík, M., Olexová, A., Treindl, Ľ., Journal of Molecular Catalysis A: Chemical 127 (1997) 43. Melitas, N., Farrell, J., Environ. Sci. Technol. 36 (2002) 5476. Mihai, D., Rustoiu-Csavdari, A., Baldea, I., Anal Bioanal Chem 381 (2005) 1362. Milenkovic, M.C., Stanisavljev, D.R., Russian Journal of Physical Chemistry A 85(13) (2011) 2279. Morita, M., Iwamoto, K., Seno, M., Bull. Chem. Soc. Jpn. 61 (1988) 3467. Orbán, M., De Kepper, P., Epstein, I.R., J. Am. Chem. Soc. 104 (1982) 2657. Orbán, M., Dateo, C., De Kepper, P., Epstein, I.R., J. Am. Chem. Soc. 104 (1982) 5911. Orbán, M., Epstein, I.R., J. Phys. Chem. 86 (1982) 3907. Orbán, M., Epstein, I.R., J. Phys. Chem. 87 (1983) 3212. Orbán, M., Epstein, I.R., J. Am. Chem. Soc. 109 (1987) 101. Orbán, M., Epstein, I.R., J. Am. Chem. Soc. 111 (1989) 2891. Orbán, M., Epstein, I.R., J. Am. Chem. Soc. 104 (1982) 5918. Orbán, M., De Kepper, P., Epstein, I.R., J. Phys. Chem. 86(4) (1982) 431. Orbán, M., Lengyel, I., Epstein, I.R., J. Am. Chem. Soc. 113 (1991) 1978. Orbán, M., Epstein, I.R., J. Am. Chem. Soc. 111 (1989) 8543. Orbán, M., Epstein, I.R., J. Am. Chem. Soc. 112 (1990) 1812. Orbán, M., Epstein, I.R., J. Am. Chem. Soc. 107 (1985) 2302. Peintler, G., Nagypál, I., Epstein, I.R., J. Phys. Chem. 94 (1990) 2954. Petre, C.F., Larachi, F., Topics in Catalysis 37(2-4) (2006) 97. Quagraine, E.K., Georgakaki, I., Coucouvanis, D., Journal of Inorganic Biochemistry 103 (2009) 143. Rábai, G., Epstein, I.R., Inorg. Chem. 28 (1989) 732. Rábai, G., Orbán, M., Epstein, I.R., Acc. Chem. Res. 23 (1990) 258. Rábai, G., Kustin, K., Epstein, I.R., J. Am. Chem. Soc. 111 (1989) 8271. Rábai, G., Kustin, K., Epstein, I.R., J. Am. Chem. Soc. 111 (1989) 3870. Rábai, G., Orbán, M., Epstein, I.R., J. Phys. Chem. 96 (1992) 5414. Rábai, G., Hanazaki, I., J. Phys. Chem. 98 (1994) 2592. Rábai, G., Epstein, I.R., J. Phys. Chem. 94 (1990) 6361. Rábai, G., Epstein, I.R., J. Am. Chem. Soc. 114 (1992) 1529. Rábai, G., Epstein, I.R., Inorg. Chem. 31 (1992) 3239. Rawoof, M.A., Sutter, J.R., J. Phys. Chem. 71(9) (1967) 2767. Rechnitz, G.A., Rao, G.N., Analytical Chemistry 39(10) (1967) 1192. Reckley, J.S., Showalter, K., J. Am. Chem. Soc. 103 (1981) 7012. Sant, B. R., Naturwissenschaften 44(6) (1957) 180. Schmitz, G., International Journal of Chemical Kinetics 40(10) (2008) 647. Schmitz, G., International journal of chemical kinetics 36(9) (2004) 480. Sharma, P., Jordan, R.B., Inorg. Chem. 29 (1990) 1286. Sharma, K., Mehrotra, R.N. (2000). Sieklueka, B., Samotus, A., Transition Met. Chem. 21 (1996) 226. Sigsworth, S.W., Castleman, A.W., J. Am. Chem. Soc. 114 (1992) 10471. Simoyi, R.H., Epstein, I.R., J. Phys. Chem. 91 (1987) 5124. Simoyi, R.H., Epstein, I.R., Kustin, K., J. Phys. Chem. 93 (1989) 2792. Simoyi, R.H., Epstein, I.R., Kustin, K., J. Phys. Chem. 93 (1989) 1689. Simoyi, R.H., Manyonda, M., Masere, J., Mtambo, M., Ncube, I., Patel, H., Epstein, I.R., Kustin, K., J. Phys, Chem. 95 (1991) 770. Sorum, C.H., Charlton, F.S., Neptune, J.A., Edwards, J.O., Journal of the American Chemical Society 74(1) (1952) 219. Sturzbecher-Höhne, M., Nauser, T., Kissner, R., Koppenol, W.H., Inorg. Chem. 48 (2009) 7307. Szirovicza, L., Boga, E., International journal of chemical kinetics 30(12) (1998) 869. Szirovicza, L., React. Kinet. Catal. Lett. 96(2) (2009) 311. Takenaka, N., Furuya, S., Sato, K., Bandow, H., Maeda, Y., Furukawa, Y., International journal of chemical kinetics 35(5) (2003) 198. Valdes-Aguilera, Boyd, D.W., Epstein, I.R., Kustin, K., J. Phys. Chem. 90 (1986) 6696. Valdes-Aguilera, Boyd, D.W., Epstein, I.R., Kustin, K., J. Phys. Chem. 90 (1986) 6702. Voslař, M., Matějka, P., Schreiber, I., Inorg. Chem. 45 (2006) 2824. Wander, M.C.F., Kerisit, S., Rosso, K.M., Schoonen, M.A.A., J. Phys. Chem. A 110 (2006) 9691. Wang, F.T., Jolly, W.L., Inorg. Chem. 11(8) (1972) 1933. Westley, F.: Table of Recommended Rate Constants for Chemical Reactions Occuring in Combustion. NBS, Washington 1980. Yngli, A., Yunfeng, B., Qingyu, G., Chinese Science Bulletin 50(16) (2005) 1688. Yoshida, T., Ushiki, Y., Bull. Chem. Soc. Jpn. 55 (1982) 1772. Neta, P., Grodkowski J., Ross, A.B., Journal of Physical and Chemical Reference Data 25 (1996) 709. Buxton, G.P., Mulazzani, Q.G., Ross, A.B., Journal of Physical and Chemical Reference Data 24 (1995) 1055. Wilkinson, F., Helman, W.P., Ross, A.B., Journal of Physical and Chemical Reference Data 24 (1995) 113. Wilkinson, F., Helman, W.P., Ross, A.B., Journal of Physical and Chmeical Reference Data 22 (1993) 113. Neta, P., Huie, R.E., Ross, A.B., Journal of Physical and Chemical Reference Data 19 (1990) 413. Wardman, P., Journal of Physical and Chemical Reference Data 18 (1989) 1637. Hoffman, M.Z., Bolletta, F., Moggi, L.., Hug, G.L., Journal of Physical and Chemical Reference Data 18 (1989) 219. Neta, P., Huie, R.E., Ross, A.B., Journal of Physical and Chemical Reference Data 17 (1988) 1027. Buxton, G.V., Greenstock, C.L., Helman, W.P., Ross, A.B., Journal of Physical and Chemical Reference Data 17 (1988) 513. Carmichael, I., Hug, G.L., Journal of Physical and Chemical Reference Data 15 (1986) 1. Gordon, S., Sullivan, J.C., Ross, A.B., Journal of Physical and Chemical Reference Data 15 (1986) 1357. Bielski, B.H.J., Cabelli, D.E., Arudi, R.L., Ross, A.B., Journal of Physical and Chemical Reference Data 14 (1985) 1041. Denisov, E.T., transl. by Johnston, R.K.: Liquid-Phase Reaction Rate Constants. IFI/Plenum Data Company, New York - Washington - London 1974. Denisov, E.: Handbook of Antioxidants. CRC Press, Boca Raton, London, New York 2018.

Info on licenses: please see the full-text licenses under the button Licenses.

ACKNOWLEDGEMENTS:

Special thanks to Alice Jarošíková and Vojtěch Ettler (Charles University in Prague, Faculty of Science, Institute of geochemistry, mineralogy and mineral resources).

The authors appreciate the financial support from the GACR projects 18-12150S, 19-22806S, 21-23261S, and internal (institutional) support RVO: 61388955.

About

PHREEQC + CHEMSOL + MOPAC + FastChem and more

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages