Skip to content

Ack 机制

Longda edited this page Dec 26, 2013 · 4 revisions

ack 机制是storm整个技术体系中非常闪亮的一个创新点, JStorm很好的继承了这个机制,并对原生storm的ack机制做了一点点代码优化。

应用场景

通过Ack机制,spout发送出去的每一条消息,都可以确定是被成功处理或失败处理, 从而可以让开发者采取动作。比如在Meta中,成功被处理,即可更新偏移量,当失败时,重复发送数据。

因此,通过Ack机制,很容易做到保证所有数据均被处理,一条都不漏。

另外需要注意的,当spout触发fail动作时,不会自动重发失败的tuple,需要spout自己重新获取数据,手动重新再发送一次

ack机制即, spout发送的每一条消息,

  • 在规定的时间内,spout收到Acker的ack响应,即认为该tuple 被后续bolt成功处理
  • 在规定的时间内,没有收到Acker的ack响应tuple,就触发fail动作,即认为该tuple处理失败,
  • 或者收到Acker发送的fail响应tuple,也认为失败,触发fail动作

另外Ack机制还常用于限流作用: 为了避免spout发送数据太快,而bolt处理太慢,常常设置pending数,当spout有等于或超过pending数的tuple没有收到ack或fail响应时,跳过执行nextTuple, 从而限制spout发送数据。

通过conf.put(Config.TOPOLOGY_MAX_SPOUT_PENDING, pending);设置spout pend数。

如何使用Ack机制

  • spout 在发送数据的时候带上msgid
  • 设置acker数至少大于0;Config.setNumAckers(conf, ackerParal);
  • 在bolt中完成处理tuple时,执行OutputCollector.ack(tuple), 当失败处理时,执行OutputCollector.fail(tuple); ** 推荐使用IBasicBolt, 因为IBasicBolt 自动封装了OutputCollector.ack(tuple), 处理失败时,请抛出FailedException,则自动执行OutputCollector.fail(tuple)

如何关闭Ack机制

有2种途径

  • spout发送数据是不带上msgid
  • 设置acker数等于0

#Acker的原理: acker的原理如下图所示:

acker

当Acker中rootid的value为0时,就发送ack 响应给spout,如果直接收到fail消息,则发送fail响应给spout

Clone this wiki locally
You can’t perform that action at this time.