This repository has been archived by the owner. It is now read-only.
Permalink
Show file tree
Hide file tree
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
27 changed files
with
2,935 additions
and
625 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
@@ -0,0 +1,63 @@ | ||
from pyspark import SparkContext, SparkConf,SQLContext | ||
from pyspark.sql.functions import count, lit, col, udf, expr, collect_list, explode | ||
from pyspark.sql.types import IntegerType, StringType, MapType, ArrayType, BooleanType,FloatType | ||
from pyspark.sql import HiveContext | ||
from datetime import datetime, timedelta | ||
from pyspark.sql.functions import broadcast | ||
|
||
def _list_to_map(count_array): | ||
count_map = {} | ||
for item in count_array: | ||
key_value = item.split(':') | ||
count_map[key_value[0]] = key_value[1] | ||
return count_map | ||
|
||
|
||
def add_count_map(df): | ||
# Convert count_array to count_map | ||
list_to_map_udf = udf(_list_to_map, MapType( | ||
StringType(), StringType(), False)) | ||
df = df.withColumn('count_map', list_to_map_udf(df.count_array)) | ||
return df | ||
|
||
def variance(plist): | ||
l=len(plist) | ||
ex=sum(plist)/l | ||
ex2=sum([i*i for i in plist])/l | ||
return ex2-ex*ex | ||
|
||
|
||
|
||
query="select count_array,day,uckey from factdata where day in ('2020-05-15','2020-05-14','2020-05-13','2020-05-12','2020-05-11','2020-05-10','2020-05-09')" | ||
sc = SparkContext() | ||
hive_context = HiveContext(sc) | ||
|
||
df = hive_context.sql(query) | ||
df = add_count_map(df) | ||
|
||
df = df.select('uckey', 'day', explode(df.count_map)).withColumnRenamed("value", "impr_count") | ||
|
||
df = df.withColumn('impr_count', udf(lambda x: int(x), IntegerType())(df.impr_count)) | ||
df = df.groupBy('uckey', 'day').sum('impr_count').withColumnRenamed("sum(impr_count)", 'impr_count') | ||
|
||
|
||
split_uckey_udf = udf(lambda x: x.split(","), ArrayType(StringType())) | ||
df = df.withColumn('col', split_uckey_udf(df.uckey)) | ||
df = df.select('uckey','impr_count', 'day', df.col[1]).withColumnRenamed("col[1]", 'slot_id') | ||
|
||
|
||
df_slot=df.select('slot_id','impr_count', 'day') | ||
df_slot=df_slot.groupBy('slot_id','day').sum('impr_count').withColumnRenamed("sum(impr_count)", "impr_total") | ||
bc_df_slot = broadcast(df_slot) | ||
|
||
df_new = df.join(bc_df_slot, on=["slot_id",'day'],how="inner") | ||
|
||
df_new = df_new.withColumn('percent', udf(lambda x,y: (x*100)/y, FloatType())(df_new.impr_count,df_new.impr_total)) | ||
|
||
|
||
df2=df_new.groupBy("uckey").agg(collect_list('percent').alias('percent')) | ||
df2 = df2.withColumn('var', udf(lambda x: variance(x), FloatType())(df2.percent)) | ||
df2.select("uckey","var").orderBy(["var"],ascending=False).show(300,truncate=False) | ||
df2.cache() | ||
print("% uckeys having varience > 0.01 ",df2.filter((df2.var <= 0.01)).count()*100/df2.count()) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.