in progress
Switch branches/tags
Nothing to show
Clone or download
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
assets fix wrong rnn unit size Feb 2, 2016
data add nsmc dataset Feb 2, 2016
models compatibile with tensorflow 0.9.0 and fix #12 Jul 28, 2016
.gitignore now training begins Feb 2, 2016
LICENSE update Feb 5, 2016
README.md add workable TF code link Apr 2, 2017
batch_loader.py Error fix #4 Feb 12, 2016
main.py fix wrong documents Feb 8, 2016
utils.py now training begins Feb 2, 2016

README.md

Character-Aware Neural Language Models

Tensorflow implementation of Character-Aware Neural Language Models. The original code of author can be found here.

model.png

This implementation contains:

  1. Word-level and Character-level Convolutional Neural Network
  2. Highway Network
  3. Recurrent Neural Network Language Model

The current implementation has a performance issue. See #3.

Prerequisites

Usage

To train a model with ptb dataset:

$ python main.py --dataset ptb

To test an existing model:

$ python main.py --dataset ptb --forward_only True

To see all training options, run:

$ python main.py --help

which will print

usage: main.py [-h] [--epoch EPOCH] [--word_embed_dim WORD_EMBED_DIM]
              [--char_embed_dim CHAR_EMBED_DIM]
              [--max_word_length MAX_WORD_LENGTH] [--batch_size BATCH_SIZE]
              [--seq_length SEQ_LENGTH] [--learning_rate LEARNING_RATE]
              [--decay DECAY] [--dropout_prob DROPOUT_PROB]
              [--feature_maps FEATURE_MAPS] [--kernels KERNELS]
              [--model MODEL] [--data_dir DATA_DIR] [--dataset DATASET]
              [--checkpoint_dir CHECKPOINT_DIR]
              [--forward_only [FORWARD_ONLY]] [--noforward_only]
              [--use_char [USE_CHAR]] [--nouse_char] [--use_word [USE_WORD]]
              [--nouse_word]

optional arguments:
  -h, --help            show this help message and exit
  --epoch EPOCH         Epoch to train [25]
  --word_embed_dim WORD_EMBED_DIM
                        The dimension of word embedding matrix [650]
  --char_embed_dim CHAR_EMBED_DIM
                        The dimension of char embedding matrix [15]
  --max_word_length MAX_WORD_LENGTH
                        The maximum length of word [65]
  --batch_size BATCH_SIZE
                        The size of batch images [100]
  --seq_length SEQ_LENGTH
                        The # of timesteps to unroll for [35]
  --learning_rate LEARNING_RATE
                        Learning rate [1.0]
  --decay DECAY         Decay of SGD [0.5]
  --dropout_prob DROPOUT_PROB
                        Probability of dropout layer [0.5]
  --feature_maps FEATURE_MAPS
                        The # of feature maps in CNN
                        [50,100,150,200,200,200,200]
  --kernels KERNELS     The width of CNN kernels [1,2,3,4,5,6,7]
  --model MODEL         The type of model to train and test [LSTM, LSTMTDNN]
  --data_dir DATA_DIR   The name of data directory [data]
  --dataset DATASET     The name of dataset [ptb]
  --checkpoint_dir CHECKPOINT_DIR
                        Directory name to save the checkpoints [checkpoint]
  --forward_only [FORWARD_ONLY]
                        True for forward only, False for training [False]
  --noforward_only
  --use_char [USE_CHAR]
                        Use character-level language model [True]
  --nouse_char
  --use_word [USE_WORD]
                        Use word-level language [False]
  --nouse_word

but more options can be found in models/LSTMTDNN and models/TDNN.

Performance

Failed to reproduce the results of paper (2016.02.12). If you are looking for a code that reproduced the paper's result, see https://github.com/mkroutikov/tf-lstm-char-cnn.

loss

The perplexity on the test sets of Penn Treebank (PTB) corpora.

Name Character embed LSTM hidden units Paper (Y Kim 2016) This repo.
LSTM-Char-Small 15 100 92.3 in progress
LSTM-Char-Large 15 150 78.9 in progress

Author

Taehoon Kim / @carpedm20