Skip to content

Commit

Permalink
wip for quickstart and homepage
Browse files Browse the repository at this point in the history
  • Loading branch information
cassidymwagner committed May 31, 2024
1 parent 9aa44f4 commit c5f5917
Show file tree
Hide file tree
Showing 3 changed files with 219 additions and 12 deletions.
34 changes: 22 additions & 12 deletions docs/source/index.rst
Original file line number Diff line number Diff line change
@@ -1,31 +1,41 @@
FluidSF Documentation
=======================
FluidSF
=======

.. toctree::
:hidden:

overview
installation
quickstart
examples
modules

.. _Overview:

Overview
********

FluidSF is a Python package for calculating structure functions from fluid data.
These structure functions can be used to estimate turbulence cascade rates without the constraints
of spectral methods. This package serves as a useful tool for analyzing turbulent dynamics in the ocean.

.. _Usage:
.. _Installing:

Installing
**********

Fork or clone the `FluidSF repository <https://github.com/cassidymwagner/FluidSF>`_ to your local machine.
Install FluidSF with pip:

.. code-block:: bash
pip install . --user
.. _Citing:

Citing
******

Usage
*****
If you use FluidSF in your research or educational activities, we would appreciate it if you cite this work.

.. admonition:: Look ma! A custom title.
.. .. code-block:: bibtex
It looks different though.
.. WIP
.. _Development and Contributing:

Expand Down
144 changes: 144 additions & 0 deletions docs/source/qs.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,144 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Getting started\n",
"Once FluidSF is installed, you can load the module into Python and run some basic calculations with random data."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"ename": "ModuleNotFoundError",
"evalue": "No module named 'fluidsf'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[1], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mfluidsf\u001b[39;00m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mnumpy\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mnp\u001b[39;00m\n",
"\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'fluidsf'"
]
}
],
"source": [
"import fluidsf\n",
"import numpy as np"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create a random 2D velocity field"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'np' is not defined",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[2], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m nx, ny \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m100\u001b[39m, \u001b[38;5;241m100\u001b[39m\n\u001b[0;32m----> 2\u001b[0m x \u001b[38;5;241m=\u001b[39m \u001b[43mnp\u001b[49m\u001b[38;5;241m.\u001b[39mlinspace(\u001b[38;5;241m0\u001b[39m, \u001b[38;5;241m1\u001b[39m, nx)\n\u001b[1;32m 3\u001b[0m y \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mlinspace(\u001b[38;5;241m0\u001b[39m, \u001b[38;5;241m1\u001b[39m, ny)\n\u001b[1;32m 4\u001b[0m U \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mrandom\u001b[38;5;241m.\u001b[39mrand(nx, ny)\n",
"\u001b[0;31mNameError\u001b[0m: name 'np' is not defined"
]
}
],
"source": [
"nx, ny = 100, 100\n",
"x = np.linspace(0, 1, nx)\n",
"y = np.linspace(0, 1, ny)\n",
"U = np.random.rand(nx, ny)\n",
"V = np.random.rand(nx, ny)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Generate the advective velocity structure function\n",
"\n",
"We can generate the advective structure function using the function `generate_structure_functions`. The function returns a dictionary with the all supported structure functions and separation distances in each direction. By default the advective velocity structure functions are calculated and the remaining structure functions are set to `None`. We set the boundary condition to `None` because our random data is non-periodic. If we had periodic data we could set the boundary condition based on the direction of periodicity (i.e. `boundary=\"periodic-x\"` or `boundary=\"periodic-y\"` for 2D data). "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sf = fluidsf.generate_structure_functions(U, V, x, y, boundary=\"None\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The keys of the dictionary `sf` are \n",
"\n",
"- `SF_advection_velocity_dir`: Advective velocity structure function in the direction of the separation vector (`dir` = `x`, `y`, `z`).\n",
"- `SF_advection_scalar_dir`: Advective scalar structure function in the direction of the separation vector (`dir` = `x`, `y`, `z`).\n",
"- `SF_LL_dir`: Longitudinal second order velocity structure function in the direction of the separation vector (`dir` = `x`, `y`, `z`).\n",
"- `SF_LLL_dir`: Longitudinal third order velocity structure function in the direction of the separation vector (`dir` = `x`, `y`, `z`).\n",
"- `SF_LTT_dir`: Longitudinal-transverse-transverse third order velocity structure function in the direction of the separation vector (`dir` = `x`, `y`, `z`).\n",
"- `SF_LSS_dir`: Longitudinal-scalar-scalar third order velocity structure function in the direction of the separation vector (`dir` = `x`, `y`, `z`).\n",
"- `dir-diffs`: Separation distances in each direction (`dir` = `x`, `y`, `z`)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Plot the advective velocity structure functions in x and y"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"fig, ax = plt.subplots()\n",
"ax.plot(sf[\"x-diffs\"], sf[\"SF_advection_velocity_x\"], label=\"Advective velocity SF in x\")\n",
"ax.plot(sf[\"y-diffs\"], sf[\"SF_advection_velocity_y\"], label=\"Advective velocity SF in y\")\n",
"ax.set_xlabel(\"Separation distance\")\n",
"ax.set_ylabel(\"Structure function\")\n",
"ax.legend()\n",
"plt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "py311",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
53 changes: 53 additions & 0 deletions docs/source/quickstart.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
Getting started
===============

Once FluidSF is installed, you can load the module into Python and run some basic calculations with random data.

.. code-block:: python
import fluidsf
import numpy as np
Create a random 2D velocity field
---------------------------------
.. code-block:: python
nx, ny = 100, 100
x = np.linspace(0, 1, nx)
y = np.linspace(0, 1, ny)
U = np.random.rand(nx, ny)
V = np.random.rand(nx, ny)
Generate the advective velocity structure function
---------------------------------------------------
We can generate the advective structure function using the function `generate_structure_functions`. The function returns a dictionary with the all supported structure functions and separation distances in each direction. By default the advective velocity structure functions are calculated and the remaining structure functions are set to `None`. We set the boundary condition to `None` because our random data is non-periodic. If we had periodic data we could set the boundary condition based on the direction of periodicity (i.e. `boundary="periodic-x"` or `boundary="periodic-y"` for 2D data).

.. code-block:: python
sf = fluidsf.generate_structure_functions(U, V, x, y, boundary="None")
The keys of the dictionary `sf` are

- `SF_advection_velocity_dir`: Advective velocity structure function in the direction of the separation vector (`dir` = `x`, `y`, `z`).
- `SF_advection_scalar_dir`: Advective scalar structure function in the direction of the separation vector (`dir` = `x`, `y`, `z`).
- `SF_LL_dir`: Longitudinal second order velocity structure function in the direction of the separation vector (`dir` = `x`, `y`, `z`).
- `SF_LLL_dir`: Longitudinal third order velocity structure function in the direction of the separation vector (`dir` = `x`, `y`, `z`).
- `SF_LTT_dir`: Longitudinal-transverse-transverse third order velocity structure function in the direction of the separation vector (`dir` = `x`, `y`, `z`).
- `SF_LSS_dir`: Longitudinal-scalar-scalar third order velocity structure function in the direction of the separation vector (`dir` = `x`, `y`, `z`).
- `dir-diffs`: Separation distances in each direction (`dir` = `x`, `y`, `z`).

Plot the advective velocity structure function
----------------------------------------------

.. code-block:: python
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
ax.plot(sf["x-diffs"], sf["SF_advection_velocity_x"], label="Advective velocity SF in x")
ax.plot(sf["y-diffs"], sf["SF_advection_velocity_y"], label="Advective velocity SF in y")
ax.set_xlabel("Separation distance")
ax.set_ylabel("Structure function")
ax.legend()
plt.show()

0 comments on commit c5f5917

Please sign in to comment.