fleet ties together systemd and etcd into a distributed init system
Pull request Compare This branch is 19 commits ahead, 8 commits behind coreos:master.
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
Documentation
agent
api
client
config
debug
engine
examples
fixtures
fleetctl
fleetd
functional
heart
job
log
machine
metrics
pkg
protobuf
registry
resource
schema
scripts
server
ssh
systemd
unit
vendor
version
.gitignore
.travis.yml
CONTRIBUTING.md
DCO
Dockerfile
LICENSE
MAINTAINERS
NOTICE
README.md
build
build-docker
build-env
cover
fleet.conf.sample
fleet.spec
glide.lock
glide.yaml
main.go
test
test-docker
vendor.manifest

README.md

fleet - a distributed init system

Build Status

fleet ties together systemd and etcd into a simple distributed init system. Think of it as an extension of systemd that operates at the cluster level instead of the machine level.

This project is quite low-level, and is designed as a foundation for higher order orchestration. fleet is a cluster-wide elaboration on systemd units, and is not a container manager or orchestration system. fleet supports basic scheduling of systemd units across nodes in a cluster. Those looking for more complex scheduling requirements or a first-class container orchestration system should check out Kubernetes. The fleet and kubernetes comparison table has more information about the two systems.

Current status

The fleet project is no longer maintained.

As of v1.0.0, fleet has seen production use for some time and is largely considered stable. However, there are various known and unresolved issues, including scalability limitations with its architecture. As such, it is not recommended to run fleet clusters larger than 100 nodes or with more than 1000 services.

Using fleet

Launching a unit with fleet is as simple as running fleetctl start:

$ fleetctl start examples/hello.service
Unit hello.service launched on 113f16a7.../172.17.8.103

The fleetctl start command waits for the unit to get scheduled and actually start somewhere in the cluster. fleetctl list-unit-files tells you the desired state of your units and where they are currently scheduled:

$ fleetctl list-unit-files
UNIT            HASH     DSTATE    STATE     TMACHINE
hello.service   e55c0ae  launched  launched  113f16a7.../172.17.8.103

fleetctl list-units exposes the systemd state for each unit in your fleet cluster:

$ fleetctl list-units
UNIT            MACHINE                    ACTIVE   SUB
hello.service   113f16a7.../172.17.8.103   active   running

Supported Deployment Patterns

fleet is not intended to be an all-purpose orchestration system, and as such supports only a few simple deployment patterns:

  • Deploy a single unit anywhere on the cluster
  • Deploy a unit globally everywhere in the cluster
  • Automatic rescheduling of units on machine failure
  • Ensure that units are deployed together on the same machine
  • Forbid specific units from colocation on the same machine (anti-affinity)
  • Deploy units to machines only with specific metadata

These patterns are all defined using custom systemd unit options.

Getting Started

Before you can deploy units, fleet must be deployed and configured on each host in your cluster. (If you are running CoreOS, fleet is already installed.)

After you have machines configured (check fleetctl list-machines), get to work with the client.

Building

fleet must be built with Go 1.5+ on a Linux machine. Simply run ./build and then copy the binaries out of bin/ directory onto each of your machines. The tests can similarly be run by simply invoking ./test.

If you're on a machine without Go 1.5+ but you have Docker installed, run ./build-docker to compile the binaries instead.

Project Details

API

The fleet API uses JSON over HTTP to manage units in a fleet cluster. See the API documentation for more information.

Release Notes

See the releases tab for more information on each release.

License

fleet is released under the Apache 2.0 license. See the LICENSE file for details.

Specific components of fleet use code derivative from software distributed under other licenses; in those cases the appropriate licenses are stipulated alongside the code.