"Deep Learning and Artificial Intelligence" Tutorial
Deep Learning and Artificial Intelligence Tutorial @ LMU WS 2018/19
University of Munich, Winter Semester 2018/19, Course Homepage
- Responsible Professor: Prof. Dr. Matthias Schubert
- Lecturers: Dr. Florian Büttner, Dr. Markus Geipel, Pankaj Gupta, Dr. Denis Krompass, Prof. Dr. Matthias Schubert, Dr. Sigurd Spieckermann, Prof. Dr. Volker Tresp
- Assistants: Sebastian Schmoll, Sabrina Friedl
- Tutor: Changkun Ou
Time: Monday, 2pm-4pm or 4pm-6pm.
Tutorial sessions
- 2018.10.22 Week 1: Python Introduction
- 2018.10.29 Week 2: Derivative, Jacobian Matrix, Mean Square Error
- 2018.11.05 Week 3: Computational Graph, Computational Gradient Graph, Backpropagation (BP), Gradient Vanishing & Exploding Problem
- 2018.11.12 Week 4: Convolution, Cross-correlation, ConvLayer and ConvNet
- 2018.11.19 Week 5: Backpropagation through Time (BPTT), Gradient Vanishing/Exploading in RNN, LSTMs, CIFAR10
- 2018.11.26 Week 6: Statistic Uncertainty, Evidence Lower Bound, Metropolis-Hastings Algorithm, LSTM
- 2018.12.03 Week 7: Local and distributed representation, Autoencoders, Restricted Boltzmann Machines
- 2018.12.10 Week 8: Tooling, PyTorch Introduction
- 2018.12.17 Week 9: Variational Autoencoder, GANs
- 2019.01.07 Week 10: Markov Reward Process, Markov Decision Process and Policy Iteration
- 2019.01.14 Week 11: Model-free Reinforcement Learning, Temporal Difference Learning, Q-Learning and SARSA
- 2019.01.21 Week 12: Value Function Approximation, Baird’s Counterexample and Montain Car benchmark
- 2019.01.28 Week 13: Policy Gradients and Actor Critic Learning
- 2019.02.04 Week 14: Knowledge Graphs in AI
- No tutorial
References
License
MIT & CC-BY 4.0 Copyright © 2018-2019 Ou Changkun