Convolutional Neural Network for Text Classification in Tensorflow
Latest commit eb9eb5c Jan 8, 2017 @dennybritz committed on GitHub Merge pull request #61 from LargonD/master
Number of checkpoints

This code belongs to the "Implementing a CNN for Text Classification in Tensorflow" blog post.

It is slightly simplified implementation of Kim's Convolutional Neural Networks for Sentence Classification paper in Tensorflow.


  • Python 3
  • Tensorflow > 0.12
  • Numpy


Print parameters:

./ --help
optional arguments:
  -h, --help            show this help message and exit
  --embedding_dim EMBEDDING_DIM
                        Dimensionality of character embedding (default: 128)
  --filter_sizes FILTER_SIZES
                        Comma-separated filter sizes (default: '3,4,5')
  --num_filters NUM_FILTERS
                        Number of filters per filter size (default: 128)
  --l2_reg_lambda L2_REG_LAMBDA
                        L2 regularizaion lambda (default: 0.0)
  --dropout_keep_prob DROPOUT_KEEP_PROB
                        Dropout keep probability (default: 0.5)
  --batch_size BATCH_SIZE
                        Batch Size (default: 64)
  --num_epochs NUM_EPOCHS
                        Number of training epochs (default: 100)
  --evaluate_every EVALUATE_EVERY
                        Evaluate model on dev set after this many steps
                        (default: 100)
  --checkpoint_every CHECKPOINT_EVERY
                        Save model after this many steps (default: 100)
  --allow_soft_placement ALLOW_SOFT_PLACEMENT
                        Allow device soft device placement
  --log_device_placement LOG_DEVICE_PLACEMENT
                        Log placement of ops on devices




./ --eval_train --checkpoint_dir="./runs/1459637919/checkpoints/"

Replace the checkpoint dir with the output from the training. To use your own data, change the script to load your data.