Skip to content
No description, website, or topics provided.
Python Shell
Branch: master
Clone or download
Type Name Latest commit message Commit time
Failed to load latest commit information.
mask added plat-canvas Sep 25, 2016
mask_layout added plat-canvas Sep 25, 2016
tools added ROC option to only score positives or negatives Sep 12, 2017
.gitignore Merged chips library into plat Oct 2, 2016
LICENSE.txt Add license (MIT) Oct 4, 2016 removed fuel dependecy, added tf procgen default, updated README Apr 1, 2018
setup.cfg Add license (MIT) Oct 4, 2016 updated and working with progran128 Sep 13, 2018

plat (v): plan out or make a map of

Utilities for exploring generative latent spaces as described in the Sampling Generative Networks paper.


Install this library, code supporting a model type, and go.

$ pip install plat
$ plat sample
Saving image file plat_20180401_NoModel_01.png

output image

Sampling Examples

By default, plat does a random sampling. The output file will be automatically generated, or can be given explicitly. To make the results repeatable, you can also specify a random seed.

$ plat sample \
  --seed 1 \
  --outfile examples/random_sample.jpg

output image

The number of rows and columns can be specified. Interpolation is done by specifying the spacing between samples.

$ plat sample \
  --seed 1 \
  --rows 1 --cols 7 \
  --spacing 6 \
  --outfile examples/random_interpolation.jpg

output image

Interpolation can be done across multiple points in two dimensions to create a mine grid (details in paper).

$ plat sample \
  --seed 1 \
  --rows 4 --cols 7 \
  --spacing 3 \
  --outfile examples/random_mine_grid.jpg

output image

There are many more options to explore. When experimenting, it can be useful to use a templated output filename.

$ plat sample \
  --seed 17 \
  --tight \
  --rows 3 --cols 7 \
  --spacing 2 \
  --outfile examples/%DATE%_experiment_s%SEED%_%SEQ%.jpg

output image

Model types

plat comes with access to a growing list of models and model types in its model zoo. Each model type will have separate dependencies.

It's also possible to run plat on new types of models by providing a simple plat interface. There are a few examples and a template to get started. Here's an example of how to use plat sample with a manually specified model interface to generate a (random) mine grid from an iGAN model:

PYTHONPATH=. plat sample \
  --model-interface plat.interface.igan.IganModel \
  --model-file models/shoes_64.dcgan_theano \
  --uniform \
  --rows 4 --cols 10 \
  --tight --spacing 3 \
  --image-size 64 \
  --seed 1

output image

You can’t perform that action at this time.