Skip to content
master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team skyb solution for the AIM2020 mobile image signal processing challenge

Publication

PyNET-CA: Enhanced PyNET with Channel Attention for End-to-End Mobile Image Signal Processing
Byung-Hoon Kim, Joonyoung Song, Jong Chul Ye, JaeHyun Baek
ECCV 2020 Workshops - Advances in Image Manipulation (AIM)

How-to

Reproduce the final results:

  1. Download the pre-trained model and extract it in the git path
  2. Run the following code with path_to_images indicating RAW images to process (add --perceptual flag for perceptual track results)
python main.py --skip_train --test_dir path_to_images
python main.py --skip_train --test_dir path_to_images --perceptual
  1. Resolved images can be found at path_to_images + '_enhanced'

Train from scratch:

  1. Download the ZRR training dataset and extract it in the data/ folder within the git path
  2. Run the following code.
python main.py

Command-line options can be listed by running the main script with -h flag.

python main.py -h

Requirements

Note: inferring with the pretrained model may not reproduce sufficient results with pytorch version over 1.4.0

  • python 3.6
  • pytorch >= 1.4.0
  • tensorboard
  • pytorch-msssim
  • IQA-pytorch
  • tqdm

Concept

PyNet-CA: Enhanced PyNet with Channel Attention for Mobile ISP

concept

Cite

@inproceedings
{
title={PyNET-CA: enhanced PyNET with channel attention for end-to-end mobile image signal processing},
author={Kim, Byung-Hoon and Song, Joonyoung and Ye, Jong Chul and Baek, JaeHyun},
booktitle={European Conference on Computer Vision},
pages={202--212},
year={2020},
organization={Springer}
}

Contact

egyptdj@yonsei.ac.kr

About

Team <skyb> solution for the AIM2020 mobile image signal processing challenge

Topics

Resources

License

Languages