Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix I2CBus::write() bug and add i2c documentation #5947

Merged
merged 4 commits into from
Dec 18, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
153 changes: 144 additions & 9 deletions esphome/components/i2c/i2c.h
Original file line number Diff line number Diff line change
Expand Up @@ -11,73 +11,208 @@ namespace i2c {

#define LOG_I2C_DEVICE(this) ESP_LOGCONFIG(TAG, " Address: 0x%02X", this->address_);

class I2CDevice;
class I2CDevice; // forward declaration

/// @brief This class is used to create I2CRegister objects that act as proxies to read/write internal registers on an
/// I2C device.
/// @details
/// @n typical usage:
/// @code
/// constexpr uint8_t ADDR_REGISTER_1 = 0x12;
/// i2c::I2CRegister reg_1 = this->reg(ADDR_REGISTER_1); // declare
/// reg_1 |= 0x01; // set bit
/// reg_1 &= ~0x01; // reset bit
/// reg_1 = 10; // Set value
/// uint val = reg_1.get(); // get value
/// @endcode
/// @details The I²C protocol specifies how to read/write in sets of 8-bits followed by an Acknowledgement (ACK/NACK)
/// from the device receiving the data. How the device interprets the bits read/written can vary greatly from
/// device to device. However most of the devices follow the same protocol for reading/writing 8 bit registers using as
/// implemented in the I2CRegister: after sending the device address, the controller sends one byte with the internal
/// register address and then read or write the specified register content.
class I2CRegister {
public:
/// @brief overloads the = operator. This allows to set the value of an i2c register
/// @param value value to be set in the register
/// @return pointer to current object
I2CRegister &operator=(uint8_t value);

/// @brief overloads the compound &= operator. This allows to reset specific bits of an I²C register
/// @param value used for the & operation
/// @return pointer to current object
I2CRegister &operator&=(uint8_t value);

/// @brief overloads the compound |= operator. This allows to set specific bits of an I²C register
/// @param value used for the & operation
/// @return pointer to current object
I2CRegister &operator|=(uint8_t value);

/// @brief overloads the uint8_t() cast operator to return the I²C register value
/// @return pointer to current object
explicit operator uint8_t() const { return get(); }

/// @brief returns the register value
/// @return the register value
uint8_t get() const;

protected:
friend class I2CDevice;

/// @brief protected constructor that stores the owning object and the register address. Note as only friends can
/// create an I2CRegister @see I2CDevice::reg()
/// @param parent our parent
/// @param a_register address of the i2c register
I2CRegister(I2CDevice *parent, uint8_t a_register) : parent_(parent), register_(a_register) {}

I2CDevice *parent_;
uint8_t register_;
I2CDevice *parent_; ///< I2CDevice object pointer
uint8_t register_; ///< the internal address of the register
};

/// @brief This class is used to create I2CRegister16 objects that act as proxies to read/write internal registers
/// (specified with a 16 bit address) on an I2C device.
/// @details
/// @n typical usage:
/// @code
/// constexpr uint16_t X16_BIT_ADDR_REGISTER_1 = 0x1234;
/// i2c::I2CRegister16 reg_1 = this->reg16(X16_BIT_ADDR_REGISTER_1); // declare
/// reg_1 |= 0x01; // set bit
/// reg_1 &= ~0x01; // reset bit
/// reg_1 = 10; // Set value
/// uint val = reg_1.get(); // get value
/// @endcode
/// @details The I²C protocol specification, reads/writes in sets of 8-bits followed by an Acknowledgement (ACK/NACK)
/// from the device receiving the data. How the device interprets the bits read/written to it can vary greatly from
/// device to device. This class can be used to access in the device 8 bits registers that uses a 16 bits internal
/// address. After sending the device address, the controller sends the internal register address (using two consecutive
/// bytes following the big indian convention) and then read or write the register content.
class I2CRegister16 {
public:
/// @brief overloads the = operator. This allows to set the value of an I²C register
/// @param value value to be set in the register
/// @return pointer to current object
I2CRegister16 &operator=(uint8_t value);

/// @brief overloads the compound &= operator. This allows to reset specific bits of an I²C register
/// @param value used for the & operation
/// @return pointer to current object
I2CRegister16 &operator&=(uint8_t value);

/// @brief overloads the compound |= operator. This allows to set bits of an I²C register
/// @param value used for the & operation
/// @return pointer to current object
I2CRegister16 &operator|=(uint8_t value);

/// @brief overloads the uint8_t() cast operator to return the I²C register value
/// @return the register value
explicit operator uint8_t() const { return get(); }

/// @brief returns the register value
/// @return the register value
uint8_t get() const;

protected:
friend class I2CDevice;

/// @brief protected constructor that store the owning object and the register address. Only friends can create an
/// I2CRegister16 @see I2CDevice::reg16()
/// @param parent our parent
/// @param a_register 16 bits address of the i2c register
I2CRegister16(I2CDevice *parent, uint16_t a_register) : parent_(parent), register_(a_register) {}

I2CDevice *parent_;
uint16_t register_;
I2CDevice *parent_; ///< I2CDevice object pointer
uint16_t register_; ///< the internal 16 bits address of the register
};

// like ntohs/htons but without including networking headers.
// ("i2c" byte order is big-endian)
inline uint16_t i2ctohs(uint16_t i2cshort) { return convert_big_endian(i2cshort); }
inline uint16_t htoi2cs(uint16_t hostshort) { return convert_big_endian(hostshort); }

/// @brief This Class provides the methods to read/write bytes from/to an i2c device.
/// Objects keep a list of devices found on bus as well as a pointer to the I2CBus in use.
class I2CDevice {
public:
/// @brief we use the C++ default constructor
I2CDevice() = default;

/// @brief We store the address of the device on the bus
/// @param address of the device
void set_i2c_address(uint8_t address) { address_ = address; }

/// @brief we store the pointer to the I2CBus to use
/// @param bus pointer to the I2CBus object
void set_i2c_bus(I2CBus *bus) { bus_ = bus; }

/// @brief calls the I2CRegister constructor
/// @param a_register address of the I²C register
/// @return an I2CRegister proxy object
I2CRegister reg(uint8_t a_register) { return {this, a_register}; }

/// @brief calls the I2CRegister16 constructor
/// @param a_register 16 bits address of the I²C register
/// @return an I2CRegister16 proxy object
I2CRegister16 reg16(uint16_t a_register) { return {this, a_register}; }

/// @brief reads an array of bytes from the device using an I2CBus
/// @param data pointer to an array to store the bytes
/// @param len length of the buffer = number of bytes to read
/// @return an i2c::ErrorCode
ErrorCode read(uint8_t *data, size_t len) { return bus_->read(address_, data, len); }

/// @brief reads an array of bytes from a specific register in the I²C device
/// @param a_register an 8 bits internal address of the I²C register to read from
/// @param data pointer to an array to store the bytes
/// @param len length of the buffer = number of bytes to read
/// @param stop (true/false): True will send a stop message, releasing the bus after
/// transmission. False will send a restart, keeping the connection active.
/// @return an i2c::ErrorCode
ErrorCode read_register(uint8_t a_register, uint8_t *data, size_t len, bool stop = true);

/// @brief reads an array of bytes from a specific register in the I²C device
/// @param a_register the 16 bits internal address of the I²C register to read from
/// @param data pointer to an array of bytes to store the information
/// @param len length of the buffer = number of bytes to read
/// @param stop (true/false): True will send a stop message, releasing the bus after
/// transmission. False will send a restart, keeping the connection active.
/// @return an i2c::ErrorCode
ErrorCode read_register16(uint16_t a_register, uint8_t *data, size_t len, bool stop = true);

ErrorCode write(const uint8_t *data, uint8_t len, bool stop = true) { return bus_->write(address_, data, len, stop); }
/// @brief writes an array of bytes to a device using an I2CBus
/// @param data pointer to an array that contains the bytes to send
/// @param len length of the buffer = number of bytes to write
/// @param stop (true/false): True will send a stop message, releasing the bus after
/// transmission. False will send a restart, keeping the connection active.
/// @return an i2c::ErrorCode
ErrorCode write(const uint8_t *data, size_t len, bool stop = true) { return bus_->write(address_, data, len, stop); }

/// @brief writes an array of bytes to a specific register in the I²C device
/// @param a_register the internal address of the register to read from
/// @param data pointer to an array to store the bytes
/// @param len length of the buffer = number of bytes to read
/// @param stop (true/false): True will send a stop message, releasing the bus after
/// transmission. False will send a restart, keeping the connection active.
/// @return an i2c::ErrorCode
ErrorCode write_register(uint8_t a_register, const uint8_t *data, size_t len, bool stop = true);

/// @brief write an array of bytes to a specific register in the I²C device
/// @param a_register the 16 bits internal address of the register to read from
/// @param data pointer to an array to store the bytes
/// @param len length of the buffer = number of bytes to read
/// @param stop (true/false): True will send a stop message, releasing the bus after
/// transmission. False will send a restart, keeping the connection active.
/// @return an i2c::ErrorCode
ErrorCode write_register16(uint16_t a_register, const uint8_t *data, size_t len, bool stop = true);

// Compat APIs
///
/// Compat APIs
/// All methods below have been added for compatibility reasons. They do not bring any functionality and therefore on
/// new code it is not recommend to use them.
///

bool read_bytes(uint8_t a_register, uint8_t *data, uint8_t len) {
return read_register(a_register, data, len) == ERROR_OK;
}

bool read_bytes_raw(uint8_t *data, uint8_t len) { return read(data, len) == ERROR_OK; }

template<size_t N> optional<std::array<uint8_t, N>> read_bytes(uint8_t a_register) {
Expand Down Expand Up @@ -131,8 +266,8 @@ class I2CDevice {
bool write_byte_16(uint8_t a_register, uint16_t data) { return write_bytes_16(a_register, &data, 1); }

protected:
uint8_t address_{0x00};
I2CBus *bus_{nullptr};
uint8_t address_{0x00}; ///< store the address of the device on the bus
I2CBus *bus_{nullptr}; ///< pointer to I2CBus instance
};

} // namespace i2c
Expand Down
75 changes: 59 additions & 16 deletions esphome/components/i2c/i2c_bus.h
Original file line number Diff line number Diff line change
Expand Up @@ -7,50 +7,93 @@
namespace esphome {
namespace i2c {

/// @brief Error codes returned by I2CBus and I2CDevice methods
enum ErrorCode {
ERROR_OK = 0,
ERROR_INVALID_ARGUMENT = 1,
ERROR_NOT_ACKNOWLEDGED = 2,
ERROR_TIMEOUT = 3,
ERROR_NOT_INITIALIZED = 4,
ERROR_TOO_LARGE = 5,
ERROR_UNKNOWN = 6,
ERROR_CRC = 7,
NO_ERROR = 0, ///< No error found during execution of method
ERROR_OK = 0, ///< No error found during execution of method
ERROR_INVALID_ARGUMENT = 1, ///< method called invalid argument(s)
ERROR_NOT_ACKNOWLEDGED = 2, ///< I2C bus acknowledgment not received
ERROR_TIMEOUT = 3, ///< timeout while waiting to receive bytes
ERROR_NOT_INITIALIZED = 4, ///< call method to a not initialized bus
ERROR_TOO_LARGE = 5, ///< requested a transfer larger than buffers can hold
ERROR_UNKNOWN = 6, ///< miscellaneous I2C error during execution
ERROR_CRC = 7, ///< bytes received with a CRC error
};

/// @brief the ReadBuffer structure stores a pointer to a read buffer and its length
struct ReadBuffer {
uint8_t *data;
size_t len;
uint8_t *data; ///< pointer to the read buffer
size_t len; ///< length of the buffer
};

/// @brief the WriteBuffer structure stores a pointer to a write buffer and its length
struct WriteBuffer {
const uint8_t *data;
size_t len;
const uint8_t *data; ///< pointer to the write buffer
size_t len; ///< length of the buffer
};

/// @brief This Class provides the methods to read and write bytes from an I2CBus.
/// @note The I2CBus virtual class follows a *Factory design pattern* that provides all the interfaces methods required
/// by clients while deferring the actual implementation of these methods to a subclasses. I2C-bus specification and
/// user manual can be found here https://www.nxp.com/docs/en/user-guide/UM10204.pdf and an interesting I²C Application
/// note https://www.nxp.com/docs/en/application-note/AN10216.pdf
class I2CBus {
public:
/// @brief Creates a ReadBuffer and calls the virtual readv() method to read bytes into this buffer
/// @param address address of the I²C component on the i2c bus
/// @param buffer pointer to an array of bytes that will be used to store the data received
/// @param len length of the buffer = number of bytes to read
/// @return an i2c::ErrorCode
virtual ErrorCode read(uint8_t address, uint8_t *buffer, size_t len) {
ReadBuffer buf;
buf.data = buffer;
buf.len = len;
return readv(address, &buf, 1);
}
virtual ErrorCode readv(uint8_t address, ReadBuffer *buffers, size_t cnt) = 0;

/// @brief This virtual method reads bytes from an I2CBus into an array of ReadBuffer.
/// @param address address of the I²C component on the i2c bus
/// @param buffers pointer to an array of ReadBuffer
/// @param count number of ReadBuffer to read
/// @return an i2c::ErrorCode
/// @details This is a pure virtual method that must be implemented in a subclass.
virtual ErrorCode readv(uint8_t address, ReadBuffer *buffers, size_t count) = 0;

virtual ErrorCode write(uint8_t address, const uint8_t *buffer, size_t len) {
return write(address, buffer, len, true);
}

/// @brief Creates a WriteBuffer and calls the writev() method to send the bytes from this buffer
/// @param address address of the I²C component on the i2c bus
/// @param buffer pointer to an array of bytes that contains the data to be sent
/// @param len length of the buffer = number of bytes to write
/// @param stop true or false: True will send a stop message, releasing the bus after
/// transmission. False will send a restart, keeping the connection active.
/// @return an i2c::ErrorCode
virtual ErrorCode write(uint8_t address, const uint8_t *buffer, size_t len, bool stop) {
WriteBuffer buf;
buf.data = buffer;
buf.len = len;
return writev(address, &buf, 1, stop);
}

virtual ErrorCode writev(uint8_t address, WriteBuffer *buffers, size_t cnt) {
return writev(address, buffers, cnt, true);
}
virtual ErrorCode writev(uint8_t address, WriteBuffer *buffers, size_t cnt, bool stop) = 0;

/// @brief This virtual method writes bytes to an I2CBus from an array of WriteBuffer.
/// @param address address of the I²C component on the i2c bus
/// @param buffers pointer to an array of WriteBuffer
/// @param count number of WriteBuffer to write
/// @param stop true or false: True will send a stop message, releasing the bus after
/// transmission. False will send a restart, keeping the connection active.
/// @return an i2c::ErrorCode
/// @details This is a pure virtual method that must be implemented in the subclass.
virtual ErrorCode writev(uint8_t address, WriteBuffer *buffers, size_t count, bool stop) = 0;

protected:
/// @brief Scans the I2C bus for devices. Devices presence is kept in an array of std::pair
/// that contains the address and the corresponding bool presence flag.
void i2c_scan_() {
for (uint8_t address = 8; address < 120; address++) {
auto err = writev(address, nullptr, 0);
Expand All @@ -61,8 +104,8 @@ class I2CBus {
}
}
}
std::vector<std::pair<uint8_t, bool>> scan_results_;
bool scan_{false};
std::vector<std::pair<uint8_t, bool>> scan_results_; ///< array containing scan results
bool scan_{false}; ///< Should we scan ? Can be set in the yaml
};

} // namespace i2c
Expand Down