Skip to content

Commit

Permalink
Linearly extrapolated acos.
Browse files Browse the repository at this point in the history
Summary:
Implements a backprop-safe version of `torch.acos` that linearly extrapolates the function outside bounds.

Below is a plot of the extrapolated acos for different bounds:
{F611339485}

Reviewed By: bottler, nikhilaravi

Differential Revision: D27945714

fbshipit-source-id: fa2e2385b56d6fe534338d5192447c4a3aec540c
  • Loading branch information
davnov134 authored and facebook-github-bot committed Jun 21, 2021
1 parent 88f5d79 commit dd45123
Show file tree
Hide file tree
Showing 4 changed files with 246 additions and 0 deletions.
1 change: 1 addition & 0 deletions pytorch3d/transforms/__init__.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

from .math import acos_linear_extrapolation
from .rotation_conversions import (
axis_angle_to_matrix,
axis_angle_to_quaternion,
Expand Down
83 changes: 83 additions & 0 deletions pytorch3d/transforms/math.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
import math
from typing import Tuple, Union

import torch


def acos_linear_extrapolation(
x: torch.Tensor,
bound: Union[float, Tuple[float, float]] = 1.0 - 1e-4,
) -> torch.Tensor:
"""
Implements `arccos(x)` which is linearly extrapolated outside `x`'s original
domain of `(-1, 1)`. This allows for stable backpropagation in case `x`
is not guaranteed to be strictly within `(-1, 1)`.
More specifically:
```
if -bound <= x <= bound:
acos_linear_extrapolation(x) = acos(x)
elif x <= -bound: # 1st order Taylor approximation
acos_linear_extrapolation(x) = acos(-bound) + dacos/dx(-bound) * (x - (-bound))
else: # x >= bound
acos_linear_extrapolation(x) = acos(bound) + dacos/dx(bound) * (x - bound)
```
Note that `bound` can be made more specific with setting
`bound=[lower_bound, upper_bound]` as detailed below.
Args:
x: Input `Tensor`.
bound: A float constant or a float 2-tuple defining the region for the
linear extrapolation of `acos`.
If `bound` is a float scalar, linearly interpolates acos for
`x <= -bound` or `bound <= x`.
If `bound` is a 2-tuple, the first/second element of `bound`
describes the lower/upper bound that defines the lower/upper
extrapolation region, i.e. the region where
`x <= bound[0]`/`bound[1] <= x`.
Note that all elements of `bound` have to be within (-1, 1).
Returns:
acos_linear_extrapolation: `Tensor` containing the extrapolated `arccos(x)`.
"""

if isinstance(bound, float):
upper_bound = bound
lower_bound = -bound
else:
lower_bound, upper_bound = bound

if lower_bound > upper_bound:
raise ValueError("lower bound has to be smaller or equal to upper bound.")

if lower_bound <= -1.0 or upper_bound >= 1.0:
raise ValueError("Both lower bound and upper bound have to be within (-1, 1).")

# init an empty tensor and define the domain sets
acos_extrap = torch.empty_like(x)
x_upper = x >= upper_bound
x_lower = x <= lower_bound
x_mid = (~x_upper) & (~x_lower)

# acos calculation for upper_bound < x < lower_bound
acos_extrap[x_mid] = torch.acos(x[x_mid])
# the linear extrapolation for x >= upper_bound
acos_extrap[x_upper] = _acos_linear_approximation(x[x_upper], upper_bound)
# the linear extrapolation for x <= lower_bound
acos_extrap[x_lower] = _acos_linear_approximation(x[x_lower], lower_bound)

return acos_extrap


def _acos_linear_approximation(x: torch.Tensor, x0: float) -> torch.Tensor:
"""
Calculates the 1st order Taylor expansion of `arccos(x)` around `x0`.
"""
return (x - x0) * _dacos_dx(x0) + math.acos(x0)


def _dacos_dx(x: float) -> float:
"""
Calculates the derivative of `arccos(x)` w.r.t. `x`.
"""
return (-1.0) / math.sqrt(1.0 - x * x)
23 changes: 23 additions & 0 deletions tests/bm_acos_linear_extrapolation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

from fvcore.common.benchmark import benchmark
from test_acos_linear_extrapolation import TestAcosLinearExtrapolation


def bm_acos_linear_extrapolation() -> None:
kwargs_list = [
{"batch_size": 1},
{"batch_size": 100},
{"batch_size": 10000},
{"batch_size": 1000000},
]
benchmark(
TestAcosLinearExtrapolation.acos_linear_extrapolation,
"ACOS_LINEAR_EXTRAPOLATION",
kwargs_list,
warmup_iters=1,
)


if __name__ == "__main__":
bm_acos_linear_extrapolation()
139 changes: 139 additions & 0 deletions tests/test_acos_linear_extrapolation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,139 @@
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.


import unittest

import numpy as np
import torch
from common_testing import TestCaseMixin
from pytorch3d.transforms import acos_linear_extrapolation


class TestAcosLinearExtrapolation(TestCaseMixin, unittest.TestCase):
def setUp(self) -> None:
super().setUp()
torch.manual_seed(42)
np.random.seed(42)

@staticmethod
def init_acos_boundary_values(batch_size: int = 10000):
"""
Initialize a tensor containing values close to the bounds of the
domain of `acos`, i.e. close to -1 or 1; and random values between (-1, 1).
"""
device = torch.device("cuda:0")
# one quarter are random values between -1 and 1
x_rand = 2 * torch.rand(batch_size // 4, dtype=torch.float32, device=device) - 1
x = [x_rand]
for bound in [-1, 1]:
for above_bound in [True, False]:
for noise_std in [1e-4, 1e-2]:
n_generate = (batch_size - batch_size // 4) // 8
x_add = (
bound
+ (2 * float(above_bound) - 1)
* torch.randn(
n_generate, device=device, dtype=torch.float32
).abs()
* noise_std
)
x.append(x_add)
x = torch.cat(x)
return x

@staticmethod
def acos_linear_extrapolation(batch_size: int):
x = TestAcosLinearExtrapolation.init_acos_boundary_values(batch_size)
torch.cuda.synchronize()

def compute_acos():
acos_linear_extrapolation(x)
torch.cuda.synchronize()

return compute_acos

def _test_acos_outside_bounds(self, x, y, dydx, bound):
"""
Check that `acos_linear_extrapolation` yields points on a line with correct
slope, and that the function is continuous around `bound`.
"""
bound_t = torch.tensor(bound, device=x.device, dtype=x.dtype)
# fit a line: slope * x + bias = y
x_1 = torch.stack([x, torch.ones_like(x)], dim=-1)
solution = torch.linalg.lstsq(x_1, y[:, None]).solution
slope, bias = solution.view(-1)[:2]
desired_slope = (-1.0) / torch.sqrt(1.0 - bound_t ** 2)
# test that the desired slope is the same as the fitted one
self.assertClose(desired_slope.view(1), slope.view(1), atol=1e-2)
# test that the autograd's slope is the same as the desired one
self.assertClose(desired_slope.expand_as(dydx), dydx, atol=1e-2)
# test that the value of the fitted line at x=bound equals
# arccos(x), i.e. the function is continuous around the bound
y_bound_lin = (slope * bound_t + bias).view(1)
y_bound_acos = bound_t.acos().view(1)
self.assertClose(y_bound_lin, y_bound_acos, atol=1e-2)

def _one_acos_test(self, x: torch.Tensor, lower_bound: float, upper_bound: float):
"""
Test that `acos_linear_extrapolation` returns correct values for
`x` between/above/below `lower_bound`/`upper_bound`.
"""
x.requires_grad = True
x.grad = None
y = acos_linear_extrapolation(x, [lower_bound, upper_bound])
# compute the gradient of the acos w.r.t. x
y.backward(torch.ones_like(y))
dacos_dx = x.grad
x_lower = x <= lower_bound
x_upper = x >= upper_bound
x_mid = (~x_lower) & (~x_upper)
# test that between bounds, the function returns plain acos
self.assertClose(x[x_mid].acos(), y[x_mid])
# test that outside the bounds, the function is linear with the right
# slope and continuous around the bound
self._test_acos_outside_bounds(
x[x_upper], y[x_upper], dacos_dx[x_upper], upper_bound
)
self._test_acos_outside_bounds(
x[x_lower], y[x_lower], dacos_dx[x_lower], lower_bound
)
if abs(upper_bound + lower_bound) <= 1e-5: # lower_bound==-upper_bound
# check that passing bounds=upper_bound gives the same
# resut as bounds=[lower_bound, upper_bound]
y_one_bound = acos_linear_extrapolation(x, upper_bound)
self.assertClose(y_one_bound, y)

def test_acos(self, batch_size: int = 10000):
"""
Tests whether the function returns correct outputs
inside/outside the bounds.
"""
x = TestAcosLinearExtrapolation.init_acos_boundary_values(batch_size)
bounds = 1 - 10.0 ** torch.linspace(-1, -5, 5)
for lower_bound in -bounds:
for upper_bound in bounds:
if upper_bound < lower_bound:
continue
self._one_acos_test(x, float(lower_bound), float(upper_bound))

def test_finite_gradient(self, batch_size: int = 10000):
"""
Tests whether gradients stay finite close to the bounds.
"""
x = TestAcosLinearExtrapolation.init_acos_boundary_values(batch_size)
x.requires_grad = True
bounds = 1 - 10.0 ** torch.linspace(-1, -5, 5)
for lower_bound in -bounds:
for upper_bound in bounds:
if upper_bound < lower_bound:
continue
x.grad = None
y = acos_linear_extrapolation(
x,
[float(lower_bound), float(upper_bound)],
)
self.assertTrue(torch.isfinite(y).all())
loss = y.mean()
loss.backward()
self.assertIsNotNone(x.grad)
self.assertTrue(torch.isfinite(x.grad).all())

0 comments on commit dd45123

Please sign in to comment.