Skip to content

Commit

Permalink
Add a Schnorr signing and verifying example
Browse files Browse the repository at this point in the history
Co-authored-by: Jonas Nick <jonasd.nick@gmail.com>
  • Loading branch information
elichai and jonasnick committed Feb 23, 2022
1 parent fee7d4b commit b0cfbcc
Showing 1 changed file with 136 additions and 0 deletions.
136 changes: 136 additions & 0 deletions examples/schnorr.c
@@ -0,0 +1,136 @@
/*************************************************************************
* Written in 2020-2022 by Elichai Turkel *
* To the extent possible under law, the author(s) have dedicated all *
* copyright and related and neighboring rights to the software in this *
* file to the public domain worldwide. This software is distributed *
* without any warranty. For the CC0 Public Domain Dedication, see *
* EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 *
*************************************************************************/

#include <stdio.h>
#include <assert.h>
#include <string.h>

#include <secp256k1.h>
#include <secp256k1_extrakeys.h>
#include <secp256k1_schnorrsig.h>

#include "random.h"

int main(void) {
/* Instead of signing the message directly, we must sign a 32-byte hash.
* Here the message is "Hello, world!" and the hash function was SHA-256.
* An actual implementation should just call SHA-256, but this example
* hardcodes the output to avoid depending on an additional library. */
unsigned char msg_hash[32] = {
0x31, 0x5F, 0x5B, 0xDB, 0x76, 0xD0, 0x78, 0xC4,
0x3B, 0x8A, 0xC0, 0x06, 0x4E, 0x4A, 0x01, 0x64,
0x61, 0x2B, 0x1F, 0xCE, 0x77, 0xC8, 0x69, 0x34,
0x5B, 0xFC, 0x94, 0xC7, 0x58, 0x94, 0xED, 0xD3,
};
unsigned char seckey[32];
unsigned char randomize[32];
unsigned char auxiliary_rand[32];
unsigned char serialized_pubkey[32];
unsigned char signature[64];
int is_signature_valid;
int return_val;
secp256k1_xonly_pubkey pubkey;
secp256k1_keypair keypair;
/* The specification in secp256k1_extrakeys.h states that `secp256k1_keypair_create`
* needs a context object initialized for signing. And in secp256k1_schnorrsig.h
* they state that `secp256k1_schnorrsig_verify` needs a context initialized for
* verification, which is why we create a context for both signing and verification
* with the SECP256K1_CONTEXT_SIGN and SECP256K1_CONTEXT_VERIFY flags. */
secp256k1_context* ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
if (!fill_random(randomize, sizeof(randomize))) {
printf("Failed to generate randomness\n");
return 1;
}
/* Randomizing the context is recommended to protect against side-channel
* leakage See `secp256k1_context_randomize` in secp256k1.h for more
* information about it. This should never fail. */
return_val = secp256k1_context_randomize(ctx, randomize);
assert(return_val);

/*** Key Generation ***/

/* If the secret key is zero or out of range (bigger than secp256k1's
* order), we try to sample a new key. Note that the probability of this
* happening is negligible. */
while (1) {
if (!fill_random(seckey, sizeof(seckey))) {
printf("Failed to generate randomness\n");
return 1;
}
/* Try to create a keypair with a valid context, it should only fail if
* the secret key is zero or out of range. */
if (secp256k1_keypair_create(ctx, &keypair, seckey)) {
break;
}
}

/* Extract the X-only public key from the keypair. We pass NULL for
* `pk_parity` as the parity isn't needed for signing or verification.
* `secp256k1_keypair_xonly_pub` supports returning the parity for
* other use cases such as tests or verifying Taproot tweaks.
* This should never fail with a valid context and public key. */
return_val = secp256k1_keypair_xonly_pub(ctx, &pubkey, NULL, &keypair);
assert(return_val);

/* Serialize the public key. Should always return 1 for a valid public key. */
return_val = secp256k1_xonly_pubkey_serialize(ctx, serialized_pubkey, &pubkey);
assert(return_val);

/*** Signing ***/

/* Generate 32 bytes of randomness to use with BIP-340 schnorr signing. */
if (!fill_random(auxiliary_rand, sizeof(auxiliary_rand))) {
printf("Failed to generate randomness\n");
return 1;
}

/* Generate a Schnorr signature `noncefp` and `ndata` allows you to pass a
* custom nonce function, passing `NULL` will use the BIP-340 safe default.
* BIP-340 recommends passing 32 bytes of randomness to the nonce function to
* improve security against side-channel attacks. Signing with a valid
* context, verified keypair and the default nonce function should never
* fail. */
return_val = secp256k1_schnorrsig_sign(ctx, signature, msg_hash, &keypair, auxiliary_rand);
assert(return_val);

/*** Verification ***/

/* Deserialize the public key. This will return 0 if the public key can't
* be parsed correctly */
if (!secp256k1_xonly_pubkey_parse(ctx, &pubkey, serialized_pubkey)) {
printf("Failed parsing the public key\n");
return 1;
}

/* Verify a signature. This will return 1 if it's valid and 0 if it's not. */
is_signature_valid = secp256k1_schnorrsig_verify(ctx, signature, msg_hash, 32, &pubkey);


printf("Is the signature valid? %s\n", is_signature_valid ? "true" : "false");
printf("Secret Key: ");
print_hex(seckey, sizeof(seckey));
printf("Public Key: ");
print_hex(serialized_pubkey, sizeof(serialized_pubkey));
printf("Signature: ");
print_hex(signature, sizeof(signature));

/* This will clear everything from the context and free the memory */
secp256k1_context_destroy(ctx);

/* It's best practice to try to clear secrets from memory after using them.
* This is done because some bugs can allow an attacker to leak memory, for
* example through "out of bounds" array access (see Heartbleed), Or the OS
* swapping them to disk. Hence, we overwrite the secret key buffer with zeros.
*
* TODO: Prevent these writes from being optimized out, as any good compiler
* will remove any writes that aren't used. */
memset(seckey, 0, sizeof(seckey));

return 0;
}

0 comments on commit b0cfbcc

Please sign in to comment.