A tool for reactive programming with Clojure.
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Failed to load latest commit information.



A tool for reactive programming with Clojure.

Build Status

Clojars Project

API docs

The purpose of the factories and combinators as implemented here is to support declarative specifications of eventstream and behavior processing chains using the ->> macro and familiar functions like filter, map or merge.

Status of this library: it already offers many combinators that you can find in other libraries for reactive programming. So it's likely that you can use it right now to build interesting solutions. However, because this whole subject is complex and my implementation is young (in other words: you may encounter bugs), I would not recommend to use it for anything else than educational purposes. I'm currently in the process of improving tests and creating more complex scenarios, which will help to make it more mature.

Getting started

To use it you need a dependency declaration in your project.clj, see above.

In any namespace issue

(require '[reactor.core :as r])

or put it into the namespace declaration like so:

(ns my.own.namespace
  (:require [reactor.core :as r]))

Now you have reactor functions available with r/ prefix.

Using a timer

(def timer (r/timer 2000))

The value of timer is a behavior (think of an observable, thread-safe variable) that increases a counter every 2 seconds, starting with 1.

Let's do something with it, for example multiply the tick value by 10 and print the result to the console.

(->> timer
     (r/map (partial * 10))
     (r/subscribe println))

You should see a sequence of numbers printed. Because the timer is a background task, the numbers may not show up in the REPL output, so you must look at the console output.

You can clear the network and all associated schedulers/timers by issuing:


The timer stops and the network is empty.

What is this 'network' thing?

Reactor is built upon reactnet. Reactnet maintains an explicit graph that connects reactives (a generalization of behaviors and eventstreams) with functions. This is called the network. Everytime you use one of the r/ functions you'll likely change the configuration of this network.

The network is not static. It can be changed anytime, either by reactor API functions, or by results of functions used by r/flatmap or eventstreams used with r/switch, r/amb and others. It also changes when an eventstream completes, which means the stream is guaranteed to not have any more pending events.

In addition, each network has an associated set of schedulers, for example to create delays or throttling or providing timer ticks.

You can easily create distinct networks:

(def n (r/network "periodic-actions"))

The advantage of creating distinct networks is more control and better performance. To refer to a specific network when using reactor API you use the (r/with network exprs) macro, which creates a dynamic var binding for reactnet.core/*netref* to n:

(r/with n
        (def timer (r/timer 2000))
		(->> timer
			 (r/map (partial * 10))
		     (r/subscribe println)))

Of course, you can clear this specific network using:

(r/reset-network! n)

Building up processing chains

Suppose you want to query a stock price every second. In case the price increases three times in a row you want to send a mail.

Let's define a function that mimicks the remote call to get the latest stock price:

(defn stock-price
  (rand-nth (range 1 10)))

We'll need some helper functions, the first creates a reduction function to buffer items, the second is a predicate yielding true if all numbers in xs are monotonically increasing, the third is the dummy action implementation.

(defn sliding-buffer
  (fn [buf x]
    (conj (vec (drop (- (count buf) (dec n)) buf)) x)))

(defn increasing?
  (->> xs
       (map vector (drop 1 xs))
       (every? (partial apply >))))

(defn send-mail!
  (println "Increasing prices!" prices))

Again, we create a network instance:

(def n (r/network "price-checker"))

We connect these by the following expression:

(r/with n (->> (r/sample 1000 stock-price)
               (r/scan (sliding-buffer 3) [])
               (r/filter #(>= (count %) 3))
               (r/filter increasing?)
               (r/subscribe send-mail!)))

(r/sample millis f) invokes the given no-arg function f every millis milliseconds and emits the result.

(r/scan f initial-value r) applies reduction function f to latest result (or initial-value) and the latest item from r. Each result is emitted.

The resulting chain of function applications may look unfamiliar, however it's pretty declarative.

Asynchronity on-demand

By default, reactor propagates values synchronously through the network (ordered by topological levels), doing as much as possible in a single function call. Functions that are either expensive to execute or must wait for IO or a remote service would block the propagation within a network. In the example above querying the stock price and sending mail are actions that you might want to execute asynchronously.

For those cases you can wrap the function into an (r/in-future ...) expression. Most of reactors combinators will then pass the function to a future-based executor. The result of the function application will be pushed into the network just like an external stimulus.

Here's the example from above with explicit asynchronity:

(r/with n (->> (r/sample 1000 (r/in-future stock-price))
               (r/scan (sliding-buffer 3) [])
               (r/filter #(>= (count %) 3))
               (r/filter increasing?)
               (r/subscribe (r/in-future send-mail!))))

More on eventstreams and behaviors

The foundation of reactor uses a generalization of eventstream and behavior, called a reactive. You will often find r or rs as argument names in reactor functions, usually you can then pass an eventstream or a behavior, or even mix them in one function application.

r/timer or r/sample are two possible ways to create a behavior or an eventstream, respectively. In general, you can create a general purpose eventstream with (r/eventstream) and a behavior using (r/behavior x), where x is an arbitrary value or even itself a reactive.

A behavior has always a value, it's much like a thread-safe variable (some say: "a time-varying value"), so functions lifted to work on behaviors via r/map will execute as soon as one behavior changes. An eventstream, on the other hand, contains a bounded queue, and values are consumed from it. Therefore an eventstream might not have any value available. A lifted function working on some eventstreams will only be executed when all eventstreams have a value available. You can mix eventstreams and behaviors in the same r/map application.

A behavior emits a value whenever it receives a new value which is different from its current value. Hence, there is no need to convert a behavior to an eventstream. To create a behavior from an eventstream you'll use r/hold.

You can push a value to an eventstream or behavior using (r/push! n r v), where n is the associated network, r is the reactive and v is an arbitrarily structured value.

You can always deref a reactive. A behavior will return its current value, an eventstream will return the next value or nil. Please note that r/push! is executed asynchronously, therefore you cannot expect that a immediate deref in the same thread will yield the last recently pushed value.

You can complete both of them using (r/complete! n r), which means they won't accept new values. An eventstream will continue to emit events that it received before it received the completion request.

Expression lifting

You can do dataflow programming on behaviors by lifting expressions. An example:


More Examples

See reactor-samples project.


Copyright 2014 F.Riemenschneider

Distributed under the Eclipse Public License 1.0, the same as Clojure.