Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Enable the SPU1 and SPU2 sound processing units #16

Open
frno7 opened this issue Mar 17, 2019 · 6 comments
Open

Enable the SPU1 and SPU2 sound processing units #16

frno7 opened this issue Mar 17, 2019 · 6 comments
Labels
enhancement New feature or request

Comments

@frno7
Copy link
Owner

frno7 commented Mar 17, 2019

Enable the SPU1 and SPU2 sound processing units.

@frno7 frno7 added the enhancement New feature or request label Mar 17, 2019
@Ravenslofty
Copy link

The SPU2 is accessed through IOP DMA, I believe, so it would need to be DMA'd into IOP memory, then into SPU2 memory, Additionally, the SPU2 is a synthesizer, so I have no clue how one would go about writing an ALSA driver for it to get desktop sound. Perhaps use a buffer of audio as a "sample" that you play?

@frno7
Copy link
Owner Author

frno7 commented Apr 19, 2019

The SPU2 is accessed through IOP DMA, I believe, so it would need to be DMA'd into IOP memory, then into SPU2 memory,

Is there any efficient way to stream audio via the SIF, using tagged DMA?

Additionally, the SPU2 is a synthesizer, so I have no clue how one would go about writing an ALSA driver for it to get desktop sound. Perhaps use a buffer of audio as a "sample" that you play?

Perhaps something similar to a MIDI sequencer would be a suitable device?

frno7 pushed a commit that referenced this issue Apr 28, 2019
[ Upstream commit 42dfa45 ]

Using gcc's ASan, Changbin reports:

  =================================================================
  ==7494==ERROR: LeakSanitizer: detected memory leaks

  Direct leak of 48 byte(s) in 1 object(s) allocated from:
      #0 0x7f0333a89138 in calloc (/usr/lib/x86_64-linux-gnu/libasan.so.5+0xee138)
      #1 0x5625e5330a5e in zalloc util/util.h:23
      #2 0x5625e5330a9b in perf_counts__new util/counts.c:10
      #3 0x5625e5330ca0 in perf_evsel__alloc_counts util/counts.c:47
      #4 0x5625e520d8e5 in __perf_evsel__read_on_cpu util/evsel.c:1505
      #5 0x5625e517a985 in perf_evsel__read_on_cpu /home/work/linux/tools/perf/util/evsel.h:347
      #6 0x5625e517ad1a in test__openat_syscall_event tests/openat-syscall.c:47
      #7 0x5625e51528e6 in run_test tests/builtin-test.c:358
      #8 0x5625e5152baf in test_and_print tests/builtin-test.c:388
      #9 0x5625e51543fe in __cmd_test tests/builtin-test.c:583
      #10 0x5625e515572f in cmd_test tests/builtin-test.c:722
      #11 0x5625e51c3fb8 in run_builtin /home/changbin/work/linux/tools/perf/perf.c:302
      #12 0x5625e51c44f7 in handle_internal_command /home/changbin/work/linux/tools/perf/perf.c:354
      #13 0x5625e51c48fb in run_argv /home/changbin/work/linux/tools/perf/perf.c:398
      #14 0x5625e51c5069 in main /home/changbin/work/linux/tools/perf/perf.c:520
      #15 0x7f033214d09a in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x2409a)

  Indirect leak of 72 byte(s) in 1 object(s) allocated from:
      #0 0x7f0333a89138 in calloc (/usr/lib/x86_64-linux-gnu/libasan.so.5+0xee138)
      #1 0x5625e532560d in zalloc util/util.h:23
      #2 0x5625e532566b in xyarray__new util/xyarray.c:10
      #3 0x5625e5330aba in perf_counts__new util/counts.c:15
      #4 0x5625e5330ca0 in perf_evsel__alloc_counts util/counts.c:47
      #5 0x5625e520d8e5 in __perf_evsel__read_on_cpu util/evsel.c:1505
      #6 0x5625e517a985 in perf_evsel__read_on_cpu /home/work/linux/tools/perf/util/evsel.h:347
      #7 0x5625e517ad1a in test__openat_syscall_event tests/openat-syscall.c:47
      #8 0x5625e51528e6 in run_test tests/builtin-test.c:358
      #9 0x5625e5152baf in test_and_print tests/builtin-test.c:388
      #10 0x5625e51543fe in __cmd_test tests/builtin-test.c:583
      #11 0x5625e515572f in cmd_test tests/builtin-test.c:722
      #12 0x5625e51c3fb8 in run_builtin /home/changbin/work/linux/tools/perf/perf.c:302
      #13 0x5625e51c44f7 in handle_internal_command /home/changbin/work/linux/tools/perf/perf.c:354
      #14 0x5625e51c48fb in run_argv /home/changbin/work/linux/tools/perf/perf.c:398
      #15 0x5625e51c5069 in main /home/changbin/work/linux/tools/perf/perf.c:520
      #16 0x7f033214d09a in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x2409a)

His patch took care of evsel->prev_raw_counts, but the above backtraces
are about evsel->counts, so fix that instead.

Reported-by: Changbin Du <changbin.du@gmail.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Link: https://lkml.kernel.org/n/tip-hd1x13g59f0nuhe4anxhsmfp@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
@Ravenslofty
Copy link

I apologise for the delay in responding, but Real Life happened.

I just read through the SPU2 User's Manual, and there is actually support for sending buffers of audio directly to the SPU2. Writing to SPU2 address 2000-21FF places a buffer of 16-bit samples in the SPU2 CORE0 left channel; 2200-23FF is the same for the right channel, and 2400-27FF is the same for CORE1, but I don't think there's any significant use to writing to both CORE0 and CORE1. Since the SPU2 output frequency depends on the IOP frequency (it outputs at 1/768 the IOP clock), sample rate is effectively locked at 48kHz while running Linux.

Is there any efficient way to stream audio via the SIF, using tagged DMA?

The SPU2 UM states that it supports AutoDMA, which is essentially reading samples directly from RAM. However, it is entirely undocumented; I believe @PSI-Rockin would know more details about how it functions.

frno7 pushed a commit that referenced this issue May 20, 2019
[ Upstream commit 7494cec ]

Calling kvm_is_visible_gfn() implies that we're parsing the memslots,
and doing this without the srcu lock is frown upon:

[12704.164532] =============================
[12704.164544] WARNING: suspicious RCU usage
[12704.164560] 5.1.0-rc1-00008-g600025238f51-dirty #16 Tainted: G        W
[12704.164573] -----------------------------
[12704.164589] ./include/linux/kvm_host.h:605 suspicious rcu_dereference_check() usage!
[12704.164602] other info that might help us debug this:
[12704.164616] rcu_scheduler_active = 2, debug_locks = 1
[12704.164631] 6 locks held by qemu-system-aar/13968:
[12704.164644]  #0: 000000007ebdae4f (&kvm->lock){+.+.}, at: vgic_its_set_attr+0x244/0x3a0
[12704.164691]  #1: 000000007d751022 (&its->its_lock){+.+.}, at: vgic_its_set_attr+0x250/0x3a0
[12704.164726]  #2: 00000000219d2706 (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0
[12704.164761]  #3: 00000000a760aecd (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0
[12704.164794]  #4: 000000000ef8e31d (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0
[12704.164827]  #5: 000000007a872093 (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0
[12704.164861] stack backtrace:
[12704.164878] CPU: 2 PID: 13968 Comm: qemu-system-aar Tainted: G        W         5.1.0-rc1-00008-g600025238f51-dirty #16
[12704.164887] Hardware name: rockchip evb_rk3399/evb_rk3399, BIOS 2019.04-rc3-00124-g2feec69fb1 03/15/2019
[12704.164896] Call trace:
[12704.164910]  dump_backtrace+0x0/0x138
[12704.164920]  show_stack+0x24/0x30
[12704.164934]  dump_stack+0xbc/0x104
[12704.164946]  lockdep_rcu_suspicious+0xcc/0x110
[12704.164958]  gfn_to_memslot+0x174/0x190
[12704.164969]  kvm_is_visible_gfn+0x28/0x70
[12704.164980]  vgic_its_check_id.isra.0+0xec/0x1e8
[12704.164991]  vgic_its_save_tables_v0+0x1ac/0x330
[12704.165001]  vgic_its_set_attr+0x298/0x3a0
[12704.165012]  kvm_device_ioctl_attr+0x9c/0xd8
[12704.165022]  kvm_device_ioctl+0x8c/0xf8
[12704.165035]  do_vfs_ioctl+0xc8/0x960
[12704.165045]  ksys_ioctl+0x8c/0xa0
[12704.165055]  __arm64_sys_ioctl+0x28/0x38
[12704.165067]  el0_svc_common+0xd8/0x138
[12704.165078]  el0_svc_handler+0x38/0x78
[12704.165089]  el0_svc+0x8/0xc

Make sure the lock is taken when doing this.

Fixes: bf30824 ("KVM: arm/arm64: VGIC/ITS: protect kvm_read_guest() calls with SRCU lock")
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Sasha Levin (Microsoft) <sashal@kernel.org>
frno7 pushed a commit that referenced this issue May 26, 2019
commit e0547c8 upstream.

On ThinkPad P50 SKUs with an Nvidia Quadro M1000M instead of the M2000M
variant, the BIOS does not always reset the secondary Nvidia GPU during
reboot if the laptop is configured in Hybrid Graphics mode.  The reason is
unknown, but the following steps and possibly a good bit of patience will
reproduce the issue:

  1. Boot up the laptop normally in Hybrid Graphics mode
  2. Make sure nouveau is loaded and that the GPU is awake
  3. Allow the Nvidia GPU to runtime suspend itself after being idle
  4. Reboot the machine, the more sudden the better (e.g. sysrq-b may help)
  5. If nouveau loads up properly, reboot the machine again and go back to
     step 2 until you reproduce the issue

This results in some very strange behavior: the GPU will be left in exactly
the same state it was in when the previously booted kernel started the
reboot.  This has all sorts of bad side effects: for starters, this
completely breaks nouveau starting with a mysterious EVO channel failure
that happens well before we've actually used the EVO channel for anything:

  nouveau 0000:01:00.0: disp: chid 0 mthd 0000 data 00000400 00001000 00000002

This causes a timeout trying to bring up the GR ctx:

  nouveau 0000:01:00.0: timeout
  WARNING: CPU: 0 PID: 12 at drivers/gpu/drm/nouveau/nvkm/engine/gr/ctxgf100.c:1547 gf100_grctx_generate+0x7b2/0x850 [nouveau]
  Hardware name: LENOVO 20EQS64N0B/20EQS64N0B, BIOS N1EET82W (1.55 ) 12/18/2018
  Workqueue: events_long drm_dp_mst_link_probe_work [drm_kms_helper]
  ...
  nouveau 0000:01:00.0: gr: wait for idle timeout (en: 1, ctxsw: 0, busy: 1)
  nouveau 0000:01:00.0: gr: wait for idle timeout (en: 1, ctxsw: 0, busy: 1)
  nouveau 0000:01:00.0: fifo: fault 01 [WRITE] at 0000000000008000 engine 00 [GR] client 15 [HUB/SCC_NB] reason c4 [] on channel -1 [0000000000 unknown]

The GPU never manages to recover.  Booting without loading nouveau causes
issues as well, since the GPU starts sending spurious interrupts that cause
other device's IRQs to get disabled by the kernel:

  irq 16: nobody cared (try booting with the "irqpoll" option)
  ...
  handlers:
  [<000000007faa9e99>] i801_isr [i2c_i801]
  Disabling IRQ #16
  ...
  serio: RMI4 PS/2 pass-through port at rmi4-00.fn03
  i801_smbus 0000:00:1f.4: Timeout waiting for interrupt!
  i801_smbus 0000:00:1f.4: Transaction timeout
  rmi4_f03 rmi4-00.fn03: rmi_f03_pt_write: Failed to write to F03 TX register (-110).
  i801_smbus 0000:00:1f.4: Timeout waiting for interrupt!
  i801_smbus 0000:00:1f.4: Transaction timeout
  rmi4_physical rmi4-00: rmi_driver_set_irq_bits: Failed to change enabled interrupts!

This causes the touchpad and sometimes other things to get disabled.

Since this happens without nouveau, we can't fix this problem from nouveau
itself.

Add a PCI quirk for the specific P50 variant of this GPU.  Make sure the
GPU is advertising NoReset- so we don't reset the GPU when the machine is
in Dedicated graphics mode (where the GPU being initialized by the BIOS is
normal and expected).  Map the GPU MMIO space and read the magic 0x2240c
register, which will have bit 1 set if the device was POSTed during a
previous boot.  Once we've confirmed all of this, reset the GPU and
re-disable it - bringing it back to a healthy state.

Link: https://bugzilla.kernel.org/show_bug.cgi?id=203003
Link: https://lore.kernel.org/lkml/20190212220230.1568-1-lyude@redhat.com
Signed-off-by: Lyude Paul <lyude@redhat.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Cc: nouveau@lists.freedesktop.org
Cc: dri-devel@lists.freedesktop.org
Cc: Karol Herbst <kherbst@redhat.com>
Cc: Ben Skeggs <skeggsb@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
@thp
Copy link

thp commented May 10, 2023

(This might not be fully relevant, apologies if it's just noise...)

The ps2sdk implements audio streaming via the "audsrv" IOP module:

https://github.com/ps2dev/ps2sdk/tree/master/iop/sound/audsrv/src

The EE side of things is implemented using the "audsrv" RPC library:

https://github.com/ps2dev/ps2sdk/tree/master/ee/rpc/audsrv/src

Here's an example how this is used:

https://github.com/ps2dev/ps2sdk/tree/master/ee/rpc/audsrv/samples/playwav

@thp
Copy link

thp commented May 10, 2023

The 2.2 kernel port also has a "ps2sd" driver that probably implements an audio device:

https://github.com/jur/linux-2.2.1-ps2/blob/master/drivers/ps2/sd.c
https://github.com/jur/linux-2.2.1-ps2/blob/master/drivers/ps2/sdmixer.c

(Edit: Nevermind, this seems to be using some BIOS calls which I read were not supported in this new port?)

2.4.17 (from Black Rhino LInux Live DVD) has these:

https://github.com/rickgaiser/linux-2.4.17-ps2/blob/master/drivers/ps2/sd.c
https://github.com/rickgaiser/linux-2.4.17-ps2/blob/master/drivers/ps2/sdmixer.c

According to the README there:

4. To get sound working you need to copy old versions of LIBSD.IRX and
   SDRDRV.IRX to mc0:kloader. The version number of SDRDRV.IRX should be 2.0 or
   smaller. You need to enable these modules in the kernelloader. For this you
   need to interrupt the auto boot and save the configuration after you enable
   the modules.

The mentioned files are on the PS2 PAL Linux Discs, Disc 1:

MODULES/MOD203/LIBSD.IRX
MODULES/MOD203/SDRDRV.IRX

(Again, also here, it might be that BIOS calls are required, haven't looked too closely)

@frno7
Copy link
Owner Author

frno7 commented May 18, 2023

Hi @thp! Apologies for the late reply. Github is no longer posting email notifications, apparently.

(Edit: Nevermind, this seems to be using some BIOS calls which I read were not supported in this new port?)

Yeah, BIOS memory is completely reclaimed by this Linux kernel. However, the Linux kernel does implement a small subset of the RPC protocol used by IOP (IRX) modules, for example to allocate memory when the IOP has booted. The plan is to make a free software implementation of the audio driver, and thereby avoid dependencies on Sony modules. The main problem with implementing drivers is usually lack of (or incomplete) hardware documentation.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
enhancement New feature or request
Projects
None yet
Development

No branches or pull requests

3 participants