Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Make gko::dim conversion to bool explicit #650

Merged
merged 1 commit into from
Oct 17, 2020
Merged

Conversation

upsj
Copy link
Member

@upsj upsj commented Oct 16, 2020

Follow up to #646:

Currently, gko::dim is implicitly convertible to bool. We could avoid the gko::dim -> bool -> int conversion chain by making operator bool explicit. C++ allows for so-called contextual conversions to also use explicit conversion operators.
<expression> is contextually converted to bool in the following cases:

  1. if(<expression>), while(<expression>), for(...;; ...)`
  2. !<expression>, ... && <expression>, || <expression>
  3. <expression> ? ... : ...
  4. static_assert/noexcept(<expression>)

So these are all places where gko::dim is used directly as a boolean. Any other use looks to me like a bug waiting to happen. In this sense:
Is this interface-breaking?

@upsj upsj added mod:core This is related to the core module. 1:ST:ready-for-review This PR is ready for review labels Oct 16, 2020
@upsj upsj self-assigned this Oct 16, 2020
@pratikvn
Copy link
Member

pratikvn commented Oct 16, 2020

well-yes-butno

I think we have done this kind of soft interface break before. If someone is using this bug as a feature, then I think it is better to break their interface to correct their usage

Copy link
Member

@tcojean tcojean left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think that's a good approach to ensuring no further bugs appear from this. Relevant godbolt (remove the explicit).

On the other end, we have another operator bool in the same file, you probably want to apply the same treatment?

@tcojean
Copy link
Member

tcojean commented Oct 16, 2020

A bug isn't a feature.

@upsj
Copy link
Member Author

upsj commented Oct 16, 2020

@tcojean Good catch! I added the second explicit as well.

Copy link
Member

@yhmtsai yhmtsai left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM

@tcojean tcojean added 1:ST:ready-to-merge This PR is ready to merge. and removed 1:ST:ready-for-review This PR is ready for review labels Oct 16, 2020
@codecov
Copy link

codecov bot commented Oct 16, 2020

Codecov Report

Merging #650 into develop will not change coverage.
The diff coverage is 100.00%.

Impacted file tree graph

@@           Coverage Diff            @@
##           develop     #650   +/-   ##
========================================
  Coverage    92.90%   92.90%           
========================================
  Files          318      318           
  Lines        22359    22359           
========================================
  Hits         20772    20772           
  Misses        1587     1587           
Impacted Files Coverage Δ
include/ginkgo/core/base/dim.hpp 88.88% <100.00%> (ø)

Continue to review full report at Codecov.

Legend - Click here to learn more
Δ = absolute <relative> (impact), ø = not affected, ? = missing data
Powered by Codecov. Last update 9dc9bc1...d5388dd. Read the comment docs.

Currently, gko::dim is implicitly convertible to bool.
C++ allows for so-called contextual conversions to also
use explicit conversion operators.
<expression> is contextually converted to bool in the following cases:

1. if(<expression>), while(<expression>), for(...; <expression>; ...)
2. !<expression>, ... && <expression>, || <expression>
3. <expression> ? ... : ...
3. static_assert/noexcept(<expression>)
@sonarcloud
Copy link

sonarcloud bot commented Oct 17, 2020

Kudos, SonarCloud Quality Gate passed!

Bug A 0 Bugs
Vulnerability A 0 Vulnerabilities (and Security Hotspot 0 Security Hotspots to review)
Code Smell A 0 Code Smells

No Coverage information No Coverage information
0.0% 0.0% Duplication

warning The version of Java (1.8.0_121) you have used to run this analysis is deprecated and we will stop accepting it from October 2020. Please update to at least Java 11.
Read more here

@upsj upsj merged commit ed4f8a2 into develop Oct 17, 2020
@upsj upsj deleted the explicit_dim_bool branch October 17, 2020 16:23
tcojean added a commit that referenced this pull request Aug 20, 2021
Ginkgo release 1.4.0

The Ginkgo team is proud to announce the new Ginkgo minor release 1.4.0. This
release brings most of the Ginkgo functionality to the Intel DPC++ ecosystem
which enables Intel-GPU and CPU execution. The only Ginkgo features which have
not been ported yet are some preconditioners.

Ginkgo's mixed-precision support is greatly enhanced thanks to:
1. The new Accessor concept, which allows writing kernels featuring on-the-fly
memory compression, among other features. The accessor can be used as
header-only, see the [accessor BLAS benchmarks repository](https://github.com/ginkgo-project/accessor-BLAS/tree/develop) as a usage example.
2. All LinOps now transparently support mixed-precision execution. By default,
this is done through a temporary copy which may have a performance impact but
already allows mixed-precision research.

Native mixed-precision ELL kernels are implemented which do not see this cost.
The accessor is also leveraged in a new CB-GMRES solver which allows for
performance improvements by compressing the Krylov basis vectors. Many other
features have been added to Ginkgo, such as reordering support, a new IDR
solver, Incomplete Cholesky preconditioner, matrix assembly support (only CPU
for now), machine topology information, and more!

Supported systems and requirements:
+ For all platforms, cmake 3.13+
+ C++14 compliant compiler
+ Linux and MacOS
  + gcc: 5.3+, 6.3+, 7.3+, all versions after 8.1+
  + clang: 3.9+
  + Intel compiler: 2018+
  + Apple LLVM: 8.0+
  + CUDA module: CUDA 9.0+
  + HIP module: ROCm 3.5+
  + DPC++ module: Intel OneAPI 2021.3. Set the CXX compiler to `dpcpp`.
+ Windows
  + MinGW and Cygwin: gcc 5.3+, 6.3+, 7.3+, all versions after 8.1+
  + Microsoft Visual Studio: VS 2019
  + CUDA module: CUDA 9.0+, Microsoft Visual Studio
  + OpenMP module: MinGW or Cygwin.


Algorithm and important feature additions:
+ Add a new DPC++ Executor for SYCL execution and other base utilities
  [#648](#648), [#661](#661), [#757](#757), [#832](#832)
+ Port matrix formats, solvers and related kernels to DPC++. For some kernels,
  also make use of a shared kernel implementation for all executors (except
  Reference). [#710](#710), [#799](#799), [#779](#779), [#733](#733), [#844](#844), [#843](#843), [#789](#789), [#845](#845), [#849](#849), [#855](#855), [#856](#856)
+ Add accessors which allow multi-precision kernels, among other things.
  [#643](#643), [#708](#708)
+ Add support for mixed precision operations through apply in all LinOps. [#677](#677)
+ Add incomplete Cholesky factorizations and preconditioners as well as some
  improvements to ILU. [#672](#672), [#837](#837), [#846](#846)
+ Add an AMGX implementation and kernels on all devices but DPC++.
  [#528](#528), [#695](#695), [#860](#860)
+ Add a new mixed-precision capability solver, Compressed Basis GMRES
  (CB-GMRES). [#693](#693), [#763](#763)
+ Add the IDR(s) solver. [#620](#620)
+ Add a new fixed-size block CSR matrix format (for the Reference executor).
  [#671](#671), [#730](#730)
+ Add native mixed-precision support to the ELL format. [#717](#717), [#780](#780)
+ Add Reverse Cuthill-McKee reordering [#500](#500), [#649](#649)
+ Add matrix assembly support on CPUs. [#644](#644)
+ Extends ISAI from triangular to general and spd matrices. [#690](#690)

Other additions:
+ Add the possibility to apply real matrices to complex vectors.
  [#655](#655), [#658](#658)
+ Add functions to compute the absolute of a matrix format. [#636](#636)
+ Add symmetric permutation and improve existing permutations.
  [#684](#684), [#657](#657), [#663](#663)
+ Add a MachineTopology class with HWLOC support [#554](#554), [#697](#697)
+ Add an implicit residual norm criterion. [#702](#702), [#818](#818), [#850](#850)
+ Row-major accessor is generalized to more than 2 dimensions and a new
  "block column-major" accessor has been added. [#707](#707)
+ Add an heat equation example. [#698](#698), [#706](#706)
+ Add ccache support in CMake and CI. [#725](#725), [#739](#739)
+ Allow tuning and benchmarking variables non intrusively. [#692](#692)
+ Add triangular solver benchmark [#664](#664)
+ Add benchmarks for BLAS operations [#772](#772), [#829](#829)
+ Add support for different precisions and consistent index types in benchmarks.
  [#675](#675), [#828](#828)
+ Add a Github bot system to facilitate development and PR management.
  [#667](#667), [#674](#674), [#689](#689), [#853](#853)
+ Add Intel (DPC++) CI support and enable CI on HPC systems. [#736](#736), [#751](#751), [#781](#781)
+ Add ssh debugging for Github Actions CI. [#749](#749)
+ Add pipeline segmentation for better CI speed. [#737](#737)


Changes:
+ Add a Scalar Jacobi specialization and kernels. [#808](#808), [#834](#834), [#854](#854)
+ Add implicit residual log for solvers and benchmarks. [#714](#714)
+ Change handling of the conjugate in the dense dot product. [#755](#755)
+ Improved Dense stride handling. [#774](#774)
+ Multiple improvements to the OpenMP kernels performance, including COO,
an exclusive prefix sum, and more. [#703](#703), [#765](#765), [#740](#740)
+ Allow specialization of submatrix and other dense creation functions in solvers. [#718](#718)
+ Improved Identity constructor and treatment of rectangular matrices. [#646](#646)
+ Allow CUDA/HIP executors to select allocation mode. [#758](#758)
+ Check if executors share the same memory. [#670](#670)
+ Improve test install and smoke testing support. [#721](#721)
+ Update the JOSS paper citation and add publications in the documentation.
  [#629](#629), [#724](#724)
+ Improve the version output. [#806](#806)
+ Add some utilities for dim and span. [#821](#821)
+ Improved solver and preconditioner benchmarks. [#660](#660)
+ Improve benchmark timing and output. [#669](#669), [#791](#791), [#801](#801), [#812](#812)


Fixes:
+ Sorting fix for the Jacobi preconditioner. [#659](#659)
+ Also log the first residual norm in CGS [#735](#735)
+ Fix BiCG and HIP CSR to work with complex matrices. [#651](#651)
+ Fix Coo SpMV on strided vectors. [#807](#807)
+ Fix segfault of extract_diagonal, add short-and-fat test. [#769](#769)
+ Fix device_reset issue by moving counter/mutex to device. [#810](#810)
+ Fix `EnableLogging` superclass. [#841](#841)
+ Support ROCm 4.1.x and breaking HIP_PLATFORM changes. [#726](#726)
+ Decreased test size for a few device tests. [#742](#742)
+ Fix multiple issues with our CMake HIP and RPATH setup.
  [#712](#712), [#745](#745), [#709](#709)
+ Cleanup our CMake installation step. [#713](#713)
+ Various simplification and fixes to the Windows CMake setup. [#720](#720), [#785](#785)
+ Simplify third-party integration. [#786](#786)
+ Improve Ginkgo device arch flags management. [#696](#696)
+ Other fixes and improvements to the CMake setup.
  [#685](#685), [#792](#792), [#705](#705), [#836](#836)
+ Clarification of dense norm documentation [#784](#784)
+ Various development tools fixes and improvements [#738](#738), [#830](#830), [#840](#840)
+ Make multiple operators/constructors explicit. [#650](#650), [#761](#761)
+ Fix some issues, memory leaks and warnings found by MSVC.
  [#666](#666), [#731](#731)
+ Improved solver memory estimates and consistent iteration counts [#691](#691)
+ Various logger improvements and fixes [#728](#728), [#743](#743), [#754](#754)
+ Fix for ForwardIterator requirements in iterator_factory. [#665](#665)
+ Various benchmark fixes. [#647](#647), [#673](#673), [#722](#722)
+ Various CI fixes and improvements. [#642](#642), [#641](#641), [#795](#795), [#783](#783), [#793](#793), [#852](#852)


Related PR: #857
tcojean added a commit that referenced this pull request Aug 23, 2021
Release 1.4.0 to master

The Ginkgo team is proud to announce the new Ginkgo minor release 1.4.0. This
release brings most of the Ginkgo functionality to the Intel DPC++ ecosystem
which enables Intel-GPU and CPU execution. The only Ginkgo features which have
not been ported yet are some preconditioners.

Ginkgo's mixed-precision support is greatly enhanced thanks to:
1. The new Accessor concept, which allows writing kernels featuring on-the-fly
memory compression, among other features. The accessor can be used as
header-only, see the [accessor BLAS benchmarks repository](https://github.com/ginkgo-project/accessor-BLAS/tree/develop) as a usage example.
2. All LinOps now transparently support mixed-precision execution. By default,
this is done through a temporary copy which may have a performance impact but
already allows mixed-precision research.

Native mixed-precision ELL kernels are implemented which do not see this cost.
The accessor is also leveraged in a new CB-GMRES solver which allows for
performance improvements by compressing the Krylov basis vectors. Many other
features have been added to Ginkgo, such as reordering support, a new IDR
solver, Incomplete Cholesky preconditioner, matrix assembly support (only CPU
for now), machine topology information, and more!

Supported systems and requirements:
+ For all platforms, cmake 3.13+
+ C++14 compliant compiler
+ Linux and MacOS
  + gcc: 5.3+, 6.3+, 7.3+, all versions after 8.1+
  + clang: 3.9+
  + Intel compiler: 2018+
  + Apple LLVM: 8.0+
  + CUDA module: CUDA 9.0+
  + HIP module: ROCm 3.5+
  + DPC++ module: Intel OneAPI 2021.3. Set the CXX compiler to `dpcpp`.
+ Windows
  + MinGW and Cygwin: gcc 5.3+, 6.3+, 7.3+, all versions after 8.1+
  + Microsoft Visual Studio: VS 2019
  + CUDA module: CUDA 9.0+, Microsoft Visual Studio
  + OpenMP module: MinGW or Cygwin.


Algorithm and important feature additions:
+ Add a new DPC++ Executor for SYCL execution and other base utilities
  [#648](#648), [#661](#661), [#757](#757), [#832](#832)
+ Port matrix formats, solvers and related kernels to DPC++. For some kernels,
  also make use of a shared kernel implementation for all executors (except
  Reference). [#710](#710), [#799](#799), [#779](#779), [#733](#733), [#844](#844), [#843](#843), [#789](#789), [#845](#845), [#849](#849), [#855](#855), [#856](#856)
+ Add accessors which allow multi-precision kernels, among other things.
  [#643](#643), [#708](#708)
+ Add support for mixed precision operations through apply in all LinOps. [#677](#677)
+ Add incomplete Cholesky factorizations and preconditioners as well as some
  improvements to ILU. [#672](#672), [#837](#837), [#846](#846)
+ Add an AMGX implementation and kernels on all devices but DPC++.
  [#528](#528), [#695](#695), [#860](#860)
+ Add a new mixed-precision capability solver, Compressed Basis GMRES
  (CB-GMRES). [#693](#693), [#763](#763)
+ Add the IDR(s) solver. [#620](#620)
+ Add a new fixed-size block CSR matrix format (for the Reference executor).
  [#671](#671), [#730](#730)
+ Add native mixed-precision support to the ELL format. [#717](#717), [#780](#780)
+ Add Reverse Cuthill-McKee reordering [#500](#500), [#649](#649)
+ Add matrix assembly support on CPUs. [#644](#644)
+ Extends ISAI from triangular to general and spd matrices. [#690](#690)

Other additions:
+ Add the possibility to apply real matrices to complex vectors.
  [#655](#655), [#658](#658)
+ Add functions to compute the absolute of a matrix format. [#636](#636)
+ Add symmetric permutation and improve existing permutations.
  [#684](#684), [#657](#657), [#663](#663)
+ Add a MachineTopology class with HWLOC support [#554](#554), [#697](#697)
+ Add an implicit residual norm criterion. [#702](#702), [#818](#818), [#850](#850)
+ Row-major accessor is generalized to more than 2 dimensions and a new
  "block column-major" accessor has been added. [#707](#707)
+ Add an heat equation example. [#698](#698), [#706](#706)
+ Add ccache support in CMake and CI. [#725](#725), [#739](#739)
+ Allow tuning and benchmarking variables non intrusively. [#692](#692)
+ Add triangular solver benchmark [#664](#664)
+ Add benchmarks for BLAS operations [#772](#772), [#829](#829)
+ Add support for different precisions and consistent index types in benchmarks.
  [#675](#675), [#828](#828)
+ Add a Github bot system to facilitate development and PR management.
  [#667](#667), [#674](#674), [#689](#689), [#853](#853)
+ Add Intel (DPC++) CI support and enable CI on HPC systems. [#736](#736), [#751](#751), [#781](#781)
+ Add ssh debugging for Github Actions CI. [#749](#749)
+ Add pipeline segmentation for better CI speed. [#737](#737)


Changes:
+ Add a Scalar Jacobi specialization and kernels. [#808](#808), [#834](#834), [#854](#854)
+ Add implicit residual log for solvers and benchmarks. [#714](#714)
+ Change handling of the conjugate in the dense dot product. [#755](#755)
+ Improved Dense stride handling. [#774](#774)
+ Multiple improvements to the OpenMP kernels performance, including COO,
an exclusive prefix sum, and more. [#703](#703), [#765](#765), [#740](#740)
+ Allow specialization of submatrix and other dense creation functions in solvers. [#718](#718)
+ Improved Identity constructor and treatment of rectangular matrices. [#646](#646)
+ Allow CUDA/HIP executors to select allocation mode. [#758](#758)
+ Check if executors share the same memory. [#670](#670)
+ Improve test install and smoke testing support. [#721](#721)
+ Update the JOSS paper citation and add publications in the documentation.
  [#629](#629), [#724](#724)
+ Improve the version output. [#806](#806)
+ Add some utilities for dim and span. [#821](#821)
+ Improved solver and preconditioner benchmarks. [#660](#660)
+ Improve benchmark timing and output. [#669](#669), [#791](#791), [#801](#801), [#812](#812)


Fixes:
+ Sorting fix for the Jacobi preconditioner. [#659](#659)
+ Also log the first residual norm in CGS [#735](#735)
+ Fix BiCG and HIP CSR to work with complex matrices. [#651](#651)
+ Fix Coo SpMV on strided vectors. [#807](#807)
+ Fix segfault of extract_diagonal, add short-and-fat test. [#769](#769)
+ Fix device_reset issue by moving counter/mutex to device. [#810](#810)
+ Fix `EnableLogging` superclass. [#841](#841)
+ Support ROCm 4.1.x and breaking HIP_PLATFORM changes. [#726](#726)
+ Decreased test size for a few device tests. [#742](#742)
+ Fix multiple issues with our CMake HIP and RPATH setup.
  [#712](#712), [#745](#745), [#709](#709)
+ Cleanup our CMake installation step. [#713](#713)
+ Various simplification and fixes to the Windows CMake setup. [#720](#720), [#785](#785)
+ Simplify third-party integration. [#786](#786)
+ Improve Ginkgo device arch flags management. [#696](#696)
+ Other fixes and improvements to the CMake setup.
  [#685](#685), [#792](#792), [#705](#705), [#836](#836)
+ Clarification of dense norm documentation [#784](#784)
+ Various development tools fixes and improvements [#738](#738), [#830](#830), [#840](#840)
+ Make multiple operators/constructors explicit. [#650](#650), [#761](#761)
+ Fix some issues, memory leaks and warnings found by MSVC.
  [#666](#666), [#731](#731)
+ Improved solver memory estimates and consistent iteration counts [#691](#691)
+ Various logger improvements and fixes [#728](#728), [#743](#743), [#754](#754)
+ Fix for ForwardIterator requirements in iterator_factory. [#665](#665)
+ Various benchmark fixes. [#647](#647), [#673](#673), [#722](#722)
+ Various CI fixes and improvements. [#642](#642), [#641](#641), [#795](#795), [#783](#783), [#793](#793), [#852](#852)

Related PR: #866
@upsj upsj mentioned this pull request Apr 1, 2024
3 tasks
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
1:ST:ready-to-merge This PR is ready to merge. mod:core This is related to the core module.
Projects
None yet
Development

Successfully merging this pull request may close these issues.

None yet

4 participants