Skip to content
master
Switch branches/tags
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

README.md

ResNet50 on Art Composition Attributes

Fine-tunes a ResNet50 (pretrained on imagenet) network by training on WikiArt images labeled with eight art composition attributes. Used with https://github.com/hollygrimm/cyclegan-keras-art-attrs to generate art.

Please read the accompanying blog post: https://hollygrimm.com/acan_final

Requirements

  • keras
  • scikit-learn
  • pillow

AWS Install

  • Select Deep Learning AMI (Ubuntu) Version 13.0
  • Instance Type GPU Compute such as p2.xlarge
  • 125GB sda1

Connect to instance, copy contents of acan-aws-setup.sh to file in /home/ubuntu and run:

vi acan-aws-setup.sh
chmod +x acan-aws-setup.sh
./aws-setup.sh

Manual Install

Download Dataset

download test.tgz and train.tgz from https://github.com/zo7/painter-by-numbers/releases/tag/data-v1.0

cd data
tar -xvf test.tgz
tar -xvf train.tgz

Label Data with Attributes

Example attribute data has been supplied for four examples in all_domain.csv. For best results, modify all_domain.csv and label more images with attributes.

input_params.json Configuration

  • base_lr: float learning rate default is 1e-04
  • optimizer: either adam or adagrad
  • batch_size: integer batch size appropriate for your GPU size
    • 30 for 8GB GPU
  • nb_epoch: integer number of epochs
  • validation_split: float split training and validation set

Run Training

source activate tensorflow_p36
cd art-composition-cnn/
python main.py -c input_params.json

Tensorboard

source activate tensorflow_p36
cd art-composition-cnn/experiments/
tensorboard --logdir=.

Run Inference on Validation Samples

Update weights_path with selected hdf5 from training:

vi input_params_for_inference.json

Run inference:

python
import main
main.infer()

Run Tests

cd tests
python art_composition_cnn_tests.py

About

Training Art Composition Attributes on ResNet50

Topics

Resources

License

Releases

No releases published

Packages

No packages published