Skip to content
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
53 lines (48 sloc) 2.08 KB
from ml_enabler.aggregators.BaseAggregator import BaseAggregator
from ml_enabler.utils import get_building_area, get_tile_center
import functools
import mercantile
import aiohttp
import asyncio
import json
class LookingGlassAggregator(BaseAggregator):
async def aggregate(self):
agg_quadkeys = self.get_agg_quadkeys()
conn = aiohttp.TCPConnector(limit=3) # FIXME: make concurrency a param
timeout = aiohttp.ClientTimeout(total=None, connect=None, sock_connect=None, sock_read=None)
async with aiohttp.ClientSession(connector=conn, timeout=timeout) as session:
futures = [self.get_values_for_quadkey(session, quadkey) for quadkey in agg_quadkeys]
results = await asyncio.gather(*futures)
self.source_metadata['zoom'] = self.zoom
out_data = {
'metadata': self.source_metadata,
'predictions': results
self.outfile.write(json.dumps(out_data, indent=2))
def get_agg_quadkeys(self):
Returns the list of unique quadkeys in the dataset at the destination zoom level
all_quadkeys = [d['quadkey'] for d in self.source_data]
return list(set([q[0:self.zoom] for q in all_quadkeys]))
async def get_values_for_quadkey(self, session, quadkey):
Returns consolidated data values for a quadkey
filtered_quadkeys = list(
filter(lambda d: d['quadkey'].startswith(quadkey), self.source_data))
total_ml_building_area = functools.reduce(
lambda a, b: int(a + b['predictions']['ml_prediction']),
tile = mercantile.quadkey_to_tile(quadkey)
osm_building_area = await get_building_area(session, tile, self.overpass_url)
return {
'quadkey': quadkey,
'centroid': get_tile_center(tile),
'predictions': {
'ml_prediction': total_ml_building_area,
'osm_building_area': osm_building_area
You can’t perform that action at this time.