Skip to content

TAESD-encoded latents are too dark #4676

@keturn

Description

@keturn

Describe the bug

AutoencodeTiny (TAESD) decoder seems to work fine. encoding on the other hand is producing poor results, and an encode-decode round-trip turns out poorly:

input:
benz

output:
sad benz

Reproduction

see https://gist.github.com/keturn/b0a10a3b388e1e49cdf38567b76eb30c

import diffusers, torch
from PIL.Image import Image, open as image_open

device = torch.device("cuda:0")

with torch.inference_mode():
    taesd = diffusers.AutoencoderTiny.from_pretrained("madebyollin/taesd", torch_dtype=torch.float16).to(device=device)
    vaesd = diffusers.AutoencoderKL.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="vae", variant="fp16", torch_dtype=torch.float16).to(device=device)

from diffusers.utils.testing_utils import load_image

image = load_image(
    "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg"
)

from diffusers.image_processor import VaeImageProcessor
vae_processor = VaeImageProcessor()
image_tensor: torch.FloatTensor = vae_processor.preprocess(image).to(dtype=torch.float16, device=device)

print(f"image tensor range: {image_tensor.min()} < {image_tensor.mean()} < {image_tensor.max()})")


with torch.inference_mode():
    taesd_latents = taesd.encode(image_tensor).latents
    print(f"taesd-encoded latent range: {taesd_latents.min()} < {taesd_latents.mean()} (σ={taesd_latents.std()}) < {taesd_latents.max()})")

    vaesd_latents = vaesd.encode(image_tensor).latent_dist.sample()
    print(f"vaesd-encoded latent range: {vaesd_latents.min()} < {vaesd_latents.mean()} (σ={vaesd_latents.std()}) < {vaesd_latents.max()})")


with torch.inference_mode():
    redecoded_tensor = taesd.decode(taesd_latents).sample


redecoded_image = vae_processor.postprocess(redecoded_tensor)
display(image, redecoded_image[0])


from diffusers.commands import env
env.EnvironmentCommand().run()

System Info

  • diffusers version: 0.20.0
  • Platform: Linux-5.15.0-79-generic-x86_64-with-glibc2.35
  • Python version: 3.11.4
  • PyTorch version (GPU?): 2.0.1+cu118 (True)
  • Huggingface_hub version: 0.16.4
  • Transformers version: 4.31.0
  • Accelerate version: 0.21.0
  • xFormers version: 0.0.21
  • Using GPU in script?: yes
  • Using distributed or parallel set-up in script?: no

Who can help?

No response

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions