Skip to content

Latest commit

 

History

History
249 lines (195 loc) · 12.1 KB

online_dpo_trainer.md

File metadata and controls

249 lines (195 loc) · 12.1 KB

Online DPO Trainer

Overview

Online DPO was proposed in Direct Language Model Alignment from Online AI Feedback by Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares, Alexandre Rame, Thomas Mesnard, Yao Zhao, Bilal Piot, Johan Ferret, and Mathieu Blondel.

The abstract from the paper is the following:

Direct alignment from preferences (DAP) methods, such as DPO, have recently emerged as efficient alternatives to reinforcement learning from human feedback (RLHF), that do not require a separate reward model. However, the preference datasets used in DAP methods are usually collected ahead of training and never updated, thus the feedback is purely offline. Moreover, responses in these datasets are often sampled from a language model distinct from the one being aligned, and since the model evolves over training, the alignment phase is inevitably off-policy. In this study, we posit that online feedback is key and improves DAP methods. Our method, online AI feedback (OAIF), uses an LLM as annotator: on each training iteration, we sample two responses from the current model and prompt the LLM annotator to choose which one is preferred, thus providing online feedback. Despite its simplicity, we demonstrate via human evaluation in several tasks that OAIF outperforms both offline DAP and RLHF methods. We further show that the feedback leveraged in OAIF is easily controllable, via instruction prompts to the LLM annotator.

The current implementation uses reward models for scoring completions -- see Reward Bench for a leaderboard of public models you can use.

This post-training method was contributed by Michael Noukhovitch, Shengyi Costa Huang, Quentin Gallouédec, and Edward Beeching.

Usage tips

Warning

Make sure that the SFT model and reward model use the same chat template. Otherwise, you may find the model completions are scored incorrectly during training.

The basic API is as follows:

from datasets import Dataset
from trl import OnlineDPOConfig, OnlineDPOTrainer
from transformers import (
    AutoModelForCausalLM,
    AutoModelForSequenceClassification,
    AutoTokenizer,
)
NUM_DUMMY_SAMPLES = 100

tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
# The model to optimise
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
# The reference model to calculate the KL divergence against
ref_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
# The model to score completions with.
reward_model = AutoModelForSequenceClassification.from_pretrained("trl-lib/Qwen2-0.5B-Reward", num_labels=1)

train_dataset = Dataset.from_dict(
    {"prompt": ["Q: Hi how are you? A:"] * NUM_DUMMY_SAMPLES})
eval_dataset = Dataset.from_dict(
    {"prompt": ["Q: What do you like to eat A:"] * NUM_DUMMY_SAMPLES})

args = OnlineDPOConfig(output_dir="online-dpo-model")
trainer = OnlineDPOTrainer(
    model=model,
    ref_model=ref_model,
    reward_model=reward_model,
    args=args,
    tokenizer=tokenizer,
    train_dataset=train_dataset,
    eval_dataset=eval_dataset,
)
trainer.train()

To test the online DPO script with 1B parameter models, run:

python examples/scripts/dpo_online.py \
    --model_name_or_path trl-lib/pythia-1b-deduped-tldr-sft  \
    --reward_model_path trl-lib/pythia-1b-deduped-tldr-rm \
    --dataset_name trl-lib/tldr \
    --learning_rate 5.0e-7 \
    --output_dir pythia-1b-tldr-online-dpo \
    --per_device_train_batch_size 4 \
    --gradient_accumulation_steps 32 \
    --num_train_epochs 3 \
    --max_new_tokens 53 \
    --warmup_ratio 0.1 \
    --missing_eos_penalty 1.0 \
    --push_to_hub

Tips:

  • objective/rlhf_reward is the ultimate objective of online DPO training. If training works as intended, this metric should keep going up.
  • We recommend using the "EOS trick" via the --missing_eos_penalty argument, which subtracts from the rewards a fixed scalar penalty for completions that do not end with an EOS token. This can help the model learn to generate more coherent completions.

Expected dataset format

Unlike offline DPO, where one provides a dataset with chosen and rejected columns, online DPO only requires a dataset of prompts to generate the completions from. The [OnlineDPOTrainer] assumes that the dataset is preprocessed for model inference, so typically you will need to wrap your prompts in the messages format and then apply the chat template as follows:

def prepare_dataset(row):
    """Apply chat template to messages"""
    row["prompt"] = tokenizer.apply_chat_template(row["prompt"], tokenize=False, add_generation_prompt=True)
    return row

dataset = prepare_dataset(dataset)

Explanation of the logged metrics

The logged metrics are as follows. Here is an example tracked run at Weights and Biases

  • objective/kl: The mean Kullback-Leibler (KL) divergence between the current model and reference model.
  • objective/entropy: The mean entropy of the model, indicating the randomness of the actions chosen by the model.
  • objective/non_score_reward: The mean reward from non-score-related sources, basically beta * kl.sum(1), where beta is the KL penalty coefficient and kl is the per-token KL divergence.
  • objective/rlhf_reward: The mean RLHF reward, which is score - non_score_reward.
  • objective/scores: The mean scores returned by the reward model / environment.
  • objective/scores_margin: The mean score margin (according to the external reward model) between the chosen and rejected completions.
  • rewards/accuracies: The accuracies of the online DPO's implicit reward model.
  • rewards/chosen: The mean reward (according to online DPO's implicit reward model)of the chosen completions.
  • rewards/rejected: The mean reward (according to online DPO's implicit reward model) of the rejected completions.
  • rewards/margins: The mean reward margin (according to online DPO's implicit reward model) between the chosen and rejected completions.
  • logps/chosen: The mean log probabilities of the chosen completions.
  • logps/rejected: The mean log probabilities of the rejected completions.
  • val/contain_eos_token: The fraction of completions which contain an EOS token.

What is my model doing exactly?

To help you understand what your model is doing, we periodically log some sample completions from the model via [LogCompletionsCallback]. You can find an example tracked run at Weights and Biases, which allows you to see the model's response at different stages of training. By default we generate during training, but you can customize the number of prompts to generate for in [LogCompletionsCallback].

Implementation details

Many online implementation details are borrowed from the [PPOv2Trainer], which is itself based on the The N+ Implementation Details of RLHF with PPO: A Case Study on TL;DR Summarization.

Benchmark experiments

To validate the online DPO implementation works, we ran experiments with the Pythia 1B, 2.8B, and 6.9B models on a single node of 8 x H100s. Here are the commands we used to run the experiments. We take the SFT / RM models directly from The N+ Implementation Details of RLHF with PPO: A Case Study on TL;DR Summarization.

# 1B Online DPO experiment
accelerate launch --config_file examples/accelerate_configs/multi_gpu.yaml \
    examples/scripts/dpo_online.py \
    --model_name_or_path trl-lib/pythia-1b-deduped-tldr-sft  \
    --reward_model_path trl-lib/pythia-1b-deduped-tldr-rm \
    --dataset_name trl-lib/tldr \
    --learning_rate 5.0e-7 \
    --output_dir pythia-1b-deduped-tldr-online-dpo \
    --beta 0.1 \
    --per_device_train_batch_size 8 \
    --gradient_accumulation_steps 2 \
    --num_train_epochs 3 \
    --max_new_tokens 53 \
    --warmup_ratio 0.1 \
    --missing_eos_penalty 1.0 \
    --logging_steps 20 \
    --save_steps 0.1 \
    --push_to_hub

# 2.8B Online DPO experiment
accelerate launch --config_file examples/accelerate_configs/deepspeed_zero2.yaml \
    examples/scripts/dpo_online.py \
    --model_name_or_path trl-lib/pythia-2.8b-deduped-tldr-sft  \
    --reward_model_path trl-lib/pythia-2.8b-deduped-tldr-rm \
    --dataset_name trl-lib/tldr \
    --learning_rate 5.0e-7 \
    --output_dir pythia-2.8b-deduped-tldr-online-dpo \
    --beta 0.1 \
    --per_device_train_batch_size 8 \
    --gradient_accumulation_steps 2 \
    --num_train_epochs 3 \
    --max_new_tokens 53 \
    --warmup_ratio 0.1 \
    --missing_eos_penalty 1.0 \
    --bf16 \
    --logging_steps 20 \
    --save_steps 0.1 \
    --push_to_hub \

# 6.9B Online DPO experiment
accelerate launch --config_file examples/accelerate_configs/deepspeed_zero2.yaml \
    examples/scripts/dpo_online.py \
    --model_name_or_path trl-lib/pythia-6.9b-deduped-tldr-sft  \
    --reward_model_path trl-lib/pythia-6.9b-deduped-tldr-rm \
    --dataset_name trl-lib/tldr \
    --learning_rate 5.0e-7 \
    --output_dir pythia-6.9b-deduped-tldr-online-dpo \
    --beta 0.1 \
    --per_device_train_batch_size 4 \
    --gradient_accumulation_steps 4 \
    --num_train_epochs 3 \
    --max_new_tokens 53 \
    --warmup_ratio 0.1 \
    --missing_eos_penalty 1.0 \
    --bf16 \
    --gradient_checkpointing \
    --logging_steps 20 \
    --save_steps 0.1 \
    --push_to_hub

Checkpoints and experiment tracking are available at:

To evaluate, we use vLLM to load the checkpoints and GPT-4o mini as a judge model to evaluate the generated TL;DR against the reference TL;DR. For more information on how to use judges, see Judges.

$ python examples/scripts/evals/judge_tldr.py --model_name_or_path trl-lib/pythia-1b-deduped-tldr-sft --judge_model gpt-4o-mini --num_examples 1000
Model win rate: 33.00%
python examples/scripts/evals/judge_tldr.py --model_name_or_path trl-lib/pythia-6.9b-deduped-tldr-sft --judge_model gpt-4o-mini --num_examples 1000
Model win rate: 41.50%
python examples/scripts/evals/judge_tldr.py --model_name_or_path trl-lib/pythia-1b-deduped-tldr-online-dpo --judge_model gpt-4o-mini --num_examples 1000
Model win rate: 62.60%
python examples/scripts/evals/judge_tldr.py --model_name_or_path trl-lib/pythia-6.9b-deduped-tldr-online-dpo --judge_model gpt-4o-mini --num_examples 1000
Model win rate: 74.20%

We can then plot the RLHF scaling chart.

import matplotlib.pyplot as plt

results = {
    "SFT": {1.0e9: 0.21, 2.8e9: 0.27, 6.9e9: 0.316},
    "online-dpo": {1.0e9: 0.542, 2.8e9: 0.746, 6.9e9: 0.796},
    "offline-dpo": {1.0e9: 0.422, 2.8e9: 0.517, 6.9e9: 0.701},
}


plt.plot(results["SFT"].keys(), results["SFT"].values(), label="SFT", marker="o")
plt.plot(results["online-dpo"].keys(), results["online-dpo"].values(), label="Online-dpo with RM judge", marker="o")
plt.plot(results["offline-dpo"].keys(), results["offline-dpo"].values(), label="Offline-dpo", marker="o")
plt.axhline(y=0.5, color="black", linestyle="-.", label="Human reference summary")
plt.xscale("log")
plt.xlabel("Model size")
plt.ylabel("Win rate against reference summaries\n(according to GPT-4-0613)")
plt.title("DPO scaling by model size")
plt.legend()
plt.xlim(5e8, 1.2e10)
plt.xticks([1e9, 3e9, 1e10], ["1B", "3B", "10B"])
plt.grid(True, which="both", ls="--", c="0.7")
plt.tight_layout()
plt.show()

The online DPO checkpoint gets increasingly more win rate as we scale up the model sizes. This is a good sign that the online DPO implementation is working as intended.

OnlineDPOTrainer

[[autodoc]] OnlineDPOTrainer

OnlineDPOConfig

[[autodoc]] OnlineDPOConfig