Multi-layer Recurrent Neural Networks (LSTM, RNN) for word-level language models in Python using TensorFlow.
Switch branches/tags
Nothing to show
Clone or download

README.md

word-rnn-tensorflow

Build Status

Multi-layer Recurrent Neural Networks (LSTM, RNN) for word-level language models in Python using TensorFlow.

Mostly reused code from https://github.com/sherjilozair/char-rnn-tensorflow which was inspired from Andrej Karpathy's char-rnn.

Requirements

Basic Usage

To train with default parameters on the tinyshakespeare corpus, run:

python train.py

To sample from a trained model

python sample.py

To pick using beam search, use the --pick parameter. Beam search can be further customized using the --width parameter, which sets the number of beams to search with. For example:

python sample.py --pick 2 --width 4

Sample output

Word-RNN

LEONTES:
Why, my Irish time?
And argue in the lord; the man mad, must be deserved a spirit as drown the warlike Pray him, how seven in.

KING would be made that, methoughts I may married a Lord dishonour
Than thou that be mine kites and sinew for his honour
In reason prettily the sudden night upon all shalt bid him thus again. times than one from mine unaccustom'd sir.

LARTIUS:
O,'tis aediles, fight!
Farewell, it himself have saw.

SLY:
Now gods have their VINCENTIO:
Whipt fearing but first I know you you, hinder truths.

ANGELO:
This are entitle up my dearest state but deliver'd.

DUKE look dissolved: seemeth brands
That He being and
full of toad, they knew me to joy.

Char-RNN

ESCALUS:
What is our honours, such a Richard story
Which you mark with bloody been Thilld we'll adverses:
That thou, Aurtructs a greques' great
Jmander may to save it not shif theseen my news
Clisters it take us?
Say the dulterout apy showd. They hance!

AnBESS OF GUCESTER:
Now, glarding far it prick me with this queen.
And if thou met were with revil, sir?

KATHW:
I must not my naturation disery,
And six nor's mighty wind, I fairs, if?

Messenger:
My lank, nobles arms;

Beam search

Beam search differs from the other --pick options in that it does not greedily pick single words; rather, it expands the most promising nodes and keeps a running score for each beam.

Word-RNN (with beam search)

# python sample.py --prime "KING RICHARD III:" -n 100 --pick 2 --width 4

KING RICHARD III:
you, and and and and have been to be hanged, I am not to be touched?

Provost:
A Bohemian born, for tying his own train,
Forthwith by all that converses more with a crow-keeper;
I have drunk, Broach'd with the acorn cradled. Follow.

FERDINAND:
Who would not be conducted.

BISHOP OF ELY:
If you have been a-bed an acre of barren ground, hath holy;
I warrant, my lord restored of noon.

ISABELLA:
'Save my master and his shortness whisper me to the pedlar;
Money's a medler.
That I will pamper it to complain.

VOLUMNIA:
Indeed, I am

Word-RNN (without beam search)

# python sample.py --prime "KING RICHARD III:" -n 100

KING RICHARD III:
marry, so and unto the wind have yours;
And thou Juliet, sir?

JULIET:
Well, wherefore speak your disposition cousin;
May thee flatter.
My hand will answer him;
e not to your Mariana Below these those and take this life,
That stir not light of reason.
The time Lucentio keeps a root from you.
Cursed be his potency,
It was my neighbour till the birth and I drank stay.

MENENIUS:
Here's the matter,
I know take this sour place,
they know allegiance Had made you guilty.
You do her bear comfort him between him or our noble bosom he did Bolingbroke's

Projects

If you have any project using this word-rnn, please let us know. I'll list up your project here.

Contribution

Your comments (issues) and PRs are always welcome.