Skip to content

Metric-Scale Truncation-Robust Heatmaps for 3D Human Pose Estimation

License

Notifications You must be signed in to change notification settings

isarandi/metro-pose3d

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

30 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Update: An extended journal version (MeTRAbs) of this paper has now been accepted!

It's recommended to use the corresponding newer codebase, which has been updated to work under TensorFlow 2

MeTRAbs repository at github.com/isarandi/metrabs


MeTRo 3D Human Pose Estimator

What is this?

TensorFlow code to train and evaluate the MeTRo method, proposed in our paper:

What does it do?

It takes a single RGB image of a person as input and returns the 3D coordinates of pre-defined body joints relative to the pelvis. The coordinates are estimated in millimeters directly. Also, it always returns a complete pose by guessing joint positions even outside of the image boundaries (truncation).

How do I run it?

There is a small, self-contained script called inference.py with minimal dependencies (just TensorFlow + NumPy), which can be used for inference with a pretrained, exported model. This makes it easy to drop it into different application scenarios without carrying along the whole training codebase. The following exported models are available now:

3D Training Data 2D Training Data Architecture Joint Convention Model Download
H36M MPII ResNet-50 H36M (17) stride_32, stride_16, stride_8, stride_4
H36M, 3DHP, 3DPW, CMU-Panoptic COCO, MPII ResNet-50 COCO/CMU (19) stride_32, stride_16, stride_8, stride_4
H36M, 3DHP, 3DPW, CMU-Panoptic COCO, MPII ResNet-101 COCO/CMU (19) stride_32, stride_16, stride_8, stride_4

Use the inference script as follows:

model=many_rn101_st16.pb
wget https://omnomnom.vision.rwth-aachen.de/data/metro-pose3d/$model
./inference.py --model-path=$model

These .pb files contain both the full TensorFlow graph and the weights.

The main purpose of the H36M model is to get benchmark results comparable with prior work. If you simply need good 3D pose predictions for a downstream application, it's recommended to use the model trained on more data. These were also trained with upper body crops, to enhance truncation robustness. Furthermore, they use the COCO/CMU-Panoptic joint convention, so some facial keypoints are also estimated (eyes, ears, nose).

How do I train it?

  1. See DEPENDENCIES.md for installing the dependencies.
  2. Then follow DATASETS.md to download and prepare the training and test data.
  3. Finally, see TRAINING.md for instructions on running experiments.

How do I cite it?

If you use this work, please cite it as:

@inproceedings{Sarandi20FG,
  title={Metric-Scale Truncation-Robust Heatmaps for 3{D} Human Pose Estimation},
  author={S\'ar\'andi, Istv\'an and Linder, Timm and Arras, Kai O. and Leibe, Bastian},
  booktitle={IEEE Int Conf Automatic Face and Gesture Recognition (FG)},
  year={2020},
}

Can I ask you something?

Sure, create an issue or write an email to István Sárándi (sarandi@vision.rwth-aachen.de).