Medical Image Segmentation
Switch branches/tags
Nothing to show
Clone or download
Latest commit 96a7ed0 Nov 28, 2018
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
promise2012 Update vnet_model.py Nov 28, 2018
LICENSE Initial commit Jul 17, 2018
README.md Update README.md Nov 9, 2018
leadboard24.PNG Add files via upload Nov 8, 2018
leadboard29.PNG Add files via upload Nov 6, 2018
leadboard9.PNG Add files via upload Nov 9, 2018
loss.PNG Add files via upload Jul 18, 2018
promise12_header.png Add files via upload Jul 17, 2018
result.PNG Add files via upload Jul 19, 2018
vnet.PNG Add files via upload Jul 18, 2018

README.md

ImageSegmentation With Vnet

This is an example of the prostate in transversal T2-weighted MR images Segment from MICCAI Grand Challenge:Prostate MR Image Segmentation 2012

How to Use

1、download trained data,download dataset:https://promise12.grand-challenge.org/download/

2、the file of PROMISE2012Image.csv,is like this format: D:\Data\PROMISE2012\Augmentation\Image/0_1.bmp D:\Data\PROMISE2012\Augmentation\Image/0_10.bmp D:\Data\PROMISE2012\Augmentation\Image/0_2.bmp ...... if you Augmentation trained data path is not D:\Data\PROMISE2012,you should change the csv file path just like this:using C:\Data\ replace D:\Data\PROMISE2012.

3、when data is prepared,just run the vnet_train_predict.py

4、training the model on the GTX1080,it take 20 hours,and i also attach the trained model in the project,you also just use the vnet_train_predict.py file to predict,and get the segmentation result.

5、download trained model:https://pan.baidu.com/s/19E9q6HIUeRB8jpuNhvE2Zg, passworld:obwu

Result

the Challenge result

the loss and model result,the example

Contact