Skip to content

[CVPR 2020] We propose a novel fusionaware 3D point convolution which operates directly on the geometric surface being reconstructed and exploits effectively the inter-frame correlation for high quality 3D feature learning.

License

jzhzhang/FusionAwareConv

master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 

FusionAwareConv

This project is based on our CVPR 2020 paper,Fusion-Aware Point Convolution for Online Semantic 3D Scene Segmentation

Introduction

We propose a novel fusionaware 3D point convolution which operates directly on the geometric surface being reconstructed and exploits effectively the inter-frame correlation for high quality 3D feature learning.

Installation

This code is based on PyTorch and needs open3D for convenient visualization

Our code has been tested with Python 3.7.6, PyTorch 1.1.0, open3d 0.9.0, CUDA 10.0 on Ubuntu 16.04.

Dataset and Pre-trained weights

We use the ScanNetv2 as our test dataset. If you want to test all the data, you can download the ScanNetV2 dataset from here. For a quick visulazation test, we provide several pre-proessing scenes of the test set sequence. Put the scene.h5 in path/data.

We also provide the pre-trained weights for ScanNet benchmark, you can download from here. After finishing the download, put the weights in path/weight.

Test

Online Segmentation Visulization

We have already intergrate the open3d for visulizaiton, you can run the command below:

python vis_sequence.py --weight2d_path=weight_path/weight2d_name --weight3d_path=weight_path/weight3d_name --gpu=0 --use_vis=1 --scene_path=scene_path/scene_name

The complete segmentation result will be generated in result.ply.

Global-local Tree Visualization

We achieve the a test demo for global-local tree visulizaiton only. Run the command below to see the processing of the tree built.

python vis_sequence.py  --use_vis=1 --scene_path=scene_path/scene_name

The complete result will be generated in result_GLtree.ply.

Citation

If you find our work useful in your research, please consider citing:

@article{zhang2020fusion,
  title={Fusion-Aware Point Convolution for Online Semantic 3D Scene Segmentation},
  author={Zhang, Jiazhao and Zhu, Chenyang and Zheng, Lintao and Xu, Kai},
  journal={arXiv preprint arXiv:2003.06233},
  year={2020}
}

Acknowledgments

Code is inspired by Red-Black-Tree and FuseNet_PyTorch.

Contact

If you have any questions, please email Jiazhao Zhang at zhngjizh@gmail.com.

About

[CVPR 2020] We propose a novel fusionaware 3D point convolution which operates directly on the geometric surface being reconstructed and exploits effectively the inter-frame correlation for high quality 3D feature learning.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages